Document Type : Original Article

Authors

1 Department of Physics, University of Guilan, Guilan, Iran

2 1. Department of Physics, University of Guilan, Guilan, Iran 2. School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

The absorption of the focused light inside aqueous electrolyte locally heats it; thus, it creates a temperature field and temperature gradient around the light-absorbing region. Due to a phenomenon known as Soret effect, positive and negative ions move in the presence of the temperature field toward the warmer or cooler region. However, this tendency and its corresponding motion are not the same for two types of ions; therefore, it ends up with a locally charged region. This means creating a pure electric charge suspended in the light absorption area. Applying an external electric field to the fluid then exerts a force to the net charge and its surrounding fluid, resulting in the fluid’s motion. We investigate this problem for an electrolyte fluid enclosed between two parallel transparent dielectric blades closely located to each other. Based on analytic and finite element methods, we calculate the temperature field created by the Gaussian beam inside and outside the electrolyte. We then obtain its induced electric potential and charge density. Finally, we calculate the fluid velocity field and the total induced current. The analytical and numerical results well verify each other.
 

Keywords

  1. B D Iverson and S V Garimella, Microfluid. and Nanofluid. 5 (2008) 145.

  2. G M Whitesides, Nature, 442 (2006) 368.

  3. D Mark et al., Chem. Soc. Rev. 39 (2010) 1153.

  4. E Brouzes et al., PNAS, 106 (34) (2009) 14195.

  5. P Yager et al., Nature, 442 (2006) 412.

  6. S J Kim et al., Nature Nanotech. 5 (2010) 297.

  7. س سیدریحانی، ع آزادبخت، ا میرزاحسین، م متقیان، و م بابایی، مجلۀ پژوهش فیزیک ایران، 19، 1 (1398) 101.


7. S N Seyed Reihani, A Azadbakht, E Mirzahossein, M Mottaghian, and M Babaei, Iranian J. Phys. Res. 19, 1 (2019) 101.



  1. W Sparreboom et al., Nature Nanotech. 4 (2009) 713.

  2. L Bocquet and E Charlaix, Chem. Soc. Rev. 39 (2010) 1073.

  3. E M Purcell, Am. J. Phys. 45 (1977) 3.

  4. E Lauga and T R Powers, Rep. Prog. Phys. 72 (2009) 096601.

  5. E Lauga, M P Brenner, and H A Stone, “Microfluidics: The no-slip boundary condition”, Handbook of Experimental Fluid Dynamics (2007) 1219.

  6. H Bruus, “Theoretical Microfluidics”, Oxford University Press, (2008).

  7. R B Schoch et al., Rev. Mod. Phys. 80 (2008) 839.

  8. H Daiguji, Chem. Soc. Rev. 39 (2010) 901.

  9. H A Stone, A D Stroock, and A Ajdari, Ann. Rev. Fluid Mech. 36 (2004) 381.

  10. T M Squires and S R Quake, Rev. Mod. Phys. 77 (2005) 977.

  11. J Melin and S R Quake, Ann. Rev. Biophys. Biomol. Struct. 36 (2007) 213.

  12. A Ajdari, Phys. Rev. E 61 (2000) R45.

  13. A Ramos et al., J. App. Phys. 97 (2005) 084906.

  14. A Castellanos et al., J. Phys. D: App. Phys. 36 (2003) 2584.

  15. F M Weinert et al., Phys. Rev. Let. 100 (2008) 164501.

  16. F M Weinert and D Braun, J. App. Phys. 104 (2008) 104701.

  17. F M Weinert et al., Phys. Chem. Chem. Phys. 13 (2011) 9918.

  18. R Kiani-Iranpour and S N Rasuli, arXiv: 1405.1602 (Submitted on 7 May 2014).

  19. R Kiani-Iranpour and S N Rasuli, under preparation.

  20. J R Blake, Math. Proc. Camb. Phil. Soc. 70 (1971) 303.

  21. N Liron and S J Mochon, Eng. Math. 10 (1976) 287.

  22. N Liron and J R Blake, J. Fluid Mech. 107 (1981) 109.

  23. C Pozrikidis, “Boundary integral and singularity methods for linearized viscous flow”, Cambridge University Press (1992).

  24. J Jamaati, H Niazmand, and M Renksizbulut, Int. J. Therm. Sci. 49 (2010) 1165.

  25. A Majee and A Würger, Soft Matter 9 (2013) 2145.

  26. S N Rasuli and R Golestanian, Phys. Rev. Let. 101 (2008) 108301.

  27. A Würger, Phys. Rev. Let. 101 (2008) 108302.

  28. G B Arfken and H J Weber, “Mathematical Methods for Physicists”,Academic Press (2005).

  29. W Russel, D Saville, and W Schowalter, “Colloidal Dispersions”, Cambridge University Press, Cambridge, U.K. (1988).

  30. S R de Groot and P Mazur, “Non-Equilibrium Thermodynamics”, Dover, New York (1984).

  31. A Majee and A Würger, Phys. Rev. E 83 (2011) 061403.

  32. J Happel and H Brenner, “Low Reynolds Number Hydrodynamics”,Kluwer, The Hague (1983).

  33. C Pozrikidis, “Fluid Dynamics Theory, Computation, and Numerical Simulation”, Springer Science + Business Media LLC (2017).

  34. R L Herman, “An Introduction to Fourier and Complex Analysis with Applications to the Spectral Analysis of Signals, published by R L Herman (2016).

  35. W A Ebert and E M Sparrow, J. Basic Eng., 87(4) (1965) 1018.

  36. R Kiani-Iranpour and S N Rasuli, unpublished.

تحت نظارت وف ایرانی