نوع مقاله : مقاله پژوهشی
نویسندگان
گروه فیزیک دانشگاه قم، قم
چکیده
در این مقاله خواص فیزیکی قرصهای برافزایشی نازک را در فضا- زمان ایستا و متقارن کروی کرمچالۀ پلیتروپیک چندگانه مطالعه میکنیم. با استفاده از مدل نویکو- تورن، شار انرژی تابشی، توزیع دمای سطح قرص، شعاع داخلیترین مدار دایرهای پایدار و بازده تابشی قرص را به دست میآوریم. نتایج را با کرمچالۀ عبور پذیر موریس- تورن (کرمچالۀ (TWH و حل شوارتس شیلد مقایسه میکنیم. این مقایسه نشان میدهد که قرصهای نازک در هندسۀ کرمچالۀ پلیتروپیک چندگانه نسبت به کرمچالۀ TWH و هندسۀ شوارتس شیلد با همان جرم هندسی، داغ تر، درخشندهتر و پربازدهترند.
کلیدواژهها
عنوان مقاله [English]
Thin accretion disks around multi-polytropic wormhole
نویسندگان [English]
- M heydari-Fard
- F Eghbalpoor
Department of Physics, The University of Qom, Qom, Iran
چکیده [English]
In this paper, we study the physical properties of thin accretion disks in static and spherically symmetric multi-polytropic wormhole space-time. Using the Novikov-Thorne model, the electromagnetic flux, temperature distribution, innermost stable circular orbits and radiative efficiency of thin disks are obtained. Comparing the results with traversable wormholes obtained by Morris and Thorne (TWH) and the Schwarzschild solution, we show that thin accretion disks around multi-polytropic wormhole geometry are more luminous and more efficient than the TWH and Schwarzschild black hole.
کلیدواژهها [English]
- accretion disks
- wormhole
- black hole physics
- M S Morris and K S Thorne, Amer. J. Phys 56 (1988) 395.
- M S Morris, K S Thorne and U Yurtsever, Phys. Rev. Lett. 61 (1988) 1446.
- I D Novikov, JETP 95 (1989) 769.
- J P S Lemos, F S N Lobo, and S Q de Oliveira, Phys. Rev. D 68 (2003) 064004
- S Kar and D Sahdev, Phys. Rev. D 53 (1996) 722.
- S N Sajadi and N Riazi, Prog. Theor. Phys 126 (2011) 753.
- S H Mazharimousavi and M Halilsoy, Mod. Phys. Lett. A 31 (2016) 1650192.
- G C Samanta and N Godani, Eur. Phys. J. C 79 (2019) 623.
- H Maeda and M Nozawa, Phys. Rev. D 78 (2008) 024005.
10. P Kanti, B Kleihaus and J Kunz, Phys. Rev. Lett 107 (2011) 271101.
11. M R Mehdizadeh, M K Zangeneh and F S N Lobo, Phys. Rev. D 91 (2015) 084004.
12. J Matulich and R Troncoso, JHEP 1110 (2011) 118.
13. M H Dehghani and M R Mehdizadeh, Phys. Rev. D 85 (2012) 024024.
14. M R Mehdizadeh and A H Ziaie, Phys. Rev. D 99 (2019) 064033.
15. R. Shaikh, Phys. Rev. D 98 (2018) 064033.
16. E Poisson and M Visser, Phys. Rev. D 52 (1995) 7318.
17. C Armendariz-Picon, Phys. Rev. D 65 (2002) 104010.
18. K A Bronnikov, L N Lipatova, I D Novikov and A A Shatskiy, Grav. Cosmol 19 (2013) 269.
19. J A Gonzalez, F S Guzman and O Sarbach, Class. Quant. Grav 26 (2009) 015010.
20. K A Bronnikov, R A Konoplya, and A Zhidenko, Phys. Rev. D 86 (2012) 024028.
21. M A Cuyubamba, R A Konoplya, and A Zhidenko, Phys. Rev. D 98 (2018) 044040.
22. V Cardoso, E Franzin and P Pani, Phys. Rev. Lett. 116 (2016) 171101.
23. R A Konoplya and A Zhidenko, JCAP 12 (2016) 043.
24. K K Nandi, R N Izmailov, A A Yanbekov and A A Shayakhmetov, Phys. Rev. D 95 (2017) 104011.
25. S N Sajadi and N Riazi, Can. J. Phys. (2020), http://doi.org/10.1139/cjp-2019-0524.
26. K Jusufi and A Ovgun, Phys. Rev. D 97 (2018) 024042.
27. R Shaikh, P Banerjee, S Paul and T Sarkar, Phys. Lett. B 789 (2019) 270.
28. P G Nedkova, V K Tinchev, and S S Yazadjiev, Phys. Rev. D 88 (2013) 124019.
29. A Abdujabbarov, B Juraev, B Ahmedov, and Z Stuchlık, Astrophys. Space. Sci.361 (2016) 226.
30. G Gyulchev, P Nedkova, V Tinchev, and S Yazadjiev, Eur. Phys. J. C 78 (2018) 544.
31. M Amir, K Jusufi, A Banerjee, and S Hansraj, Class. Quant. Grav. 36 (2019) 215007.
32. N I Shakura and R A Sunyaev, Astron. Astrophys 24 (1973) 33.
33. I D Novikov and K S Thorne, in “Black Holes”, ed. C. DeWitt and B. DeWitt, Gordon and Breach, New York (1973).
34. D N Page and K S Thorne, Astrophys. J. 191 (1974) 499.
35. K S Thorne, Astrophys. J. 191 (1974) 507.
36. C S J Pun, Z. Kovacs, and T Harko, Phys. Rev. D 78 (2008) 024043.
37. K V Staykov, D D Doneva, and S S Yazadjiev, JCAP 2016 (2016) 061.
38. D Perez, F G L Armengol and G E Romero, Phys. Rev. D 95 (2017) 104047.
39. R Kh. Karimov, R N Izmailov, A Bhattacharya, and K K Nandi, Eur. Phys. J. C 78 (2018) 788.
40. M Heydari-Fard, M Heydari-Fard, and H. R. Sepangi, Eur. Phys. J. C 80 (2020) 351.
41. S Chen and J Jing, Phys. Lett. B 704 (2011) 641.
42. C S J Pun, Z. Kovacs, and T Harko, Phys. Rev. D 78 (2008) 084015.
43. M Heydari-Fard, Class. Quant. Grav. 27 (2010) 235004.
44. Y F Yuan, R. Narayan and M. J. Rees, Astrophys. J. 606 (2004) 1112.
45. Z Kovacs, K S Cheng and T Harko, Astron. Astrophys 500 (2009) 621.
46. F S Guzman, Phys. Rev. D 73 (2006) 021501.
47. Z Kovacs and T Harco, Phys. Rev. D 82 (2010) 124047.
48. P S Joshi, D Malafarina, and R Narayan, Class. Quant. Grav. 31 (2014) 015002.
49. T Harco, Z Kovacs, and F S N Lobo, Phys. Rev. D 78 (2008) 084005.
50. T Harco, Z Kovacs, and F S N Lobo, Phys. Rev. D 79 (2009) 064001.
51. M Zhou, A Cardenas-Avendano, C Bambi, B Kleihaus, and J Kunz Phys. Rev. D 94 (2016) 024036.
52. C Bambi, Phys. Rev. D 87 (2013)084039; ibid 87 (2013) 107501.
53. S O Alexeyev, K A Rannu, and D V Gareeva, JETP 113 (2011) 628.
54. R Kh Karimov, R N Izmailov, and K K Nandi, Eur. Phys. J. C 79 (2019) 952.
55. N Riazi, S S Hashemi, S N Sajadi, and S Assyyaee, Can. J. Phys. 94 (2016) 1093.
56. C Bambi, “Black Holes: A Laboratory for Testing Strong Gravity”, Springer, Singapore (2017).
57. S Chandrasekhar, “An Introduction to the Study of Stellar Structure”, University of Chicago, Chicago, (1939).
58. S L Shapiro and S A Teukolsky, “Black Holes, White Dwarfs and Neutron Stars”, John Wiley and Sons, New York, (1983).
59. R Kippenhahn and A Weigert, “Stellar Structure and Evolution” ,Springer Verlag, Berlin(1990).
60. A Kovetz, Astrophys. J. 154 (1968) 999.
61. M Jamil, P K F Kuhfittig, F Rahaman, and Sk A Rakib, Eur. Phys. J. C 67 (2010) 513.
62. L Herrera and W Barreto, Phys. Rev. D 88 (2013) 084022.
63. F S N Lobo, Phys. Rev. D 75 (2007) 024023.