Document Type : Original Article

Authors

‎‎ ‎ Department of Physics, The University of Qom, Qom, Iran‎‎

Abstract

In this paper, we study the physical properties of thin accretion disks in static and spherically symmetric multi-polytropic wormhole space-time. Using the Novikov-Thorne model, the electromagnetic flux, temperature distribution, innermost stable circular orbits and radiative efficiency of thin disks are obtained. Comparing the results with traversable wormholes obtained by Morris and Thorne (TWH) and the Schwarzschild solution, we show that thin accretion disks around multi-polytropic wormhole geometry are more luminous and more efficient than the TWH and Schwarzschild black hole.

Keywords

  1. M S Morris and K S Thorne, Amer. J. Phys 56 (1988) 395.‎

  2. ‎M S Morris, K S Thorne and U Yurtsever, Phys. Rev. Lett. 61 (1988) 1446.‎

  3. ‎ I D Novikov, JETP 95 (1989) 769.‎

  4. ‎J P S Lemos, F S N Lobo, and S Q de Oliveira, Phys. Rev. D 68 (2003) 064004‎

  5. ‎S Kar and D Sahdev, Phys. Rev. D 53 (1996) 722.‎

  6. ‎S N Sajadi and N Riazi, Prog. Theor. Phys 126 (2011) 753.‎

  7. ‎ S H Mazharimousavi and M Halilsoy, Mod. Phys. Lett. A 31 (2016) 1650192.‎

  8. ‎ G C Samanta and N Godani, Eur. Phys. J. C 79 (2019) 623.‎

  9. ‎ H Maeda and M Nozawa, Phys. Rev. D 78 (2008) 024005.‎


10. ‎P Kanti, B Kleihaus and J Kunz, Phys. Rev. Lett 107 (2011) 271101.‎


11. M R Mehdizadeh, M K Zangeneh and F S N Lobo, Phys. Rev. D 91 (2015) 084004.‎


12. ‎ J Matulich and R Troncoso, JHEP 1110 (2011) 118.‎


13. ‎ M H Dehghani and M R Mehdizadeh, Phys. Rev. D 85 (2012) 024024.‎


14. ‎ M R Mehdizadeh and A H Ziaie, Phys. Rev. D 99 (2019) 064033.‎


15. ‎ R. Shaikh, Phys. Rev. D 98 (2018) 064033.‎


16. ‎ E Poisson and M Visser, Phys. Rev. D 52 (1995) 7318.‎


17. ‎ C Armendariz-Picon, Phys. Rev. D 65 (2002) 104010.‎


18. ‎ K A Bronnikov, L N Lipatova, I D Novikov and A A Shatskiy, Grav. Cosmol 19 ‎‎(2013) 269.‎


19. ‎ J A Gonzalez, F S Guzman and O Sarbach, Class. Quant. Grav 26 (2009) 015010.‎


20. ‎K A Bronnikov, R A Konoplya, and A Zhidenko, Phys. Rev. D 86 (2012) 024028.‎


21. ‎ M A Cuyubamba, R A Konoplya, and A Zhidenko, Phys. Rev. D 98 (2018) 044040.‎


22. ‎ V Cardoso, E Franzin and P Pani, Phys. Rev. Lett. 116 (2016) 171101.‎


23. ‎ R A Konoplya and A Zhidenko, JCAP 12 (2016) 043.‎


24. K K Nandi, R N Izmailov, A A Yanbekov and A A Shayakhmetov, Phys. Rev. D 95 ‎‎(2017) 104011.‎


25. ‎ S N Sajadi and N Riazi, Can. J. Phys. (2020), http://doi.org/10.1139/cjp-2019-0524.‎


26. ‎ K Jusufi and A Ovgun, Phys. Rev. D 97 (2018) 024042.‎


27. ‎ R Shaikh, P Banerjee, S Paul and T Sarkar, Phys. Lett. B 789 (2019) 270.‎


28. ‎P G Nedkova, V K Tinchev, and S S Yazadjiev, Phys. Rev. D 88 (2013) 124019.‎


29. ‎A Abdujabbarov, B Juraev, B Ahmedov, and Z Stuchlık, Astrophys. Space. Sci.361 ‎‎(2016) 226.‎


30. ‎ G Gyulchev, P Nedkova, V Tinchev, and S Yazadjiev, Eur. Phys. J. C 78 (2018) 544.‎


31. ‎ M Amir, K Jusufi, A Banerjee, and S Hansraj, Class. Quant. Grav. 36 (2019) 215007.‎


32. ‎ N I Shakura and R A Sunyaev, Astron. Astrophys 24 (1973) 33.‎


33. ‎ I D Novikov and K S Thorne, in “Black Holes”, ed. C. DeWitt and B. DeWitt, ‎Gordon and Breach, New York (1973). ‎


34. ‎ D N Page and K S Thorne, Astrophys. J. 191 (1974) 499.‎


35. ‎K S Thorne, Astrophys. J. 191 (1974) 507.‎


36. ‎C S J Pun, Z. Kovacs, and T Harko, Phys. Rev. D 78 (2008) 024043.‎


37. ‎ K V Staykov, D D Doneva, and S S Yazadjiev, JCAP 2016 (2016) 061.‎


38. ‎D Perez, F G L Armengol and G E Romero, Phys. Rev. D 95 (2017) 104047.‎


39. ‎ R Kh. Karimov, R N Izmailov, A Bhattacharya, and K K Nandi, Eur. Phys. J. C 78 ‎‎(2018) 788.‎


40. ‎M Heydari-Fard, M Heydari-Fard, and H. R. Sepangi, Eur. Phys. J. C 80 (2020) 351.‎


41. ‎ S Chen and J Jing, Phys. Lett. B 704 (2011) 641.‎


42. C S J Pun, Z. Kovacs, and T Harko, Phys. Rev. D 78 (2008) 084015.‎


43. ‎ M Heydari-Fard, Class. Quant. Grav. 27 (2010) 235004.‎


44. ‎ Y  F Yuan, R. Narayan and M. J. Rees, Astrophys. J. 606 (2004) 1112.‎


45. ‎ Z Kovacs, K S Cheng and T Harko, Astron. Astrophys 500 (2009) 621. ‎


46. F S Guzman, Phys. Rev. D 73 (2006) 021501.‎


47. ‎ Z Kovacs and T Harco, Phys. Rev. D 82 (2010) 124047. ‎


48. ‎ P S Joshi, D Malafarina, and R Narayan, Class. Quant. Grav. 31 (2014) 015002.‎


49. ‎ T Harco, Z Kovacs, and F S N Lobo, Phys. Rev. D 78 (2008) 084005.‎


50. ‎ T Harco, Z Kovacs, and F S N Lobo, Phys. Rev. D 79 (2009) 064001.‎


51. ‎ M Zhou, A Cardenas-Avendano, C Bambi, B Kleihaus, and J Kunz Phys. Rev. D 94 ‎‎(2016) 024036.‎


52. ‎ C Bambi, Phys. Rev. D 87 (2013)084039; ibid 87 (2013) 107501.‎


53. ‎ S O Alexeyev, K A Rannu, and D V Gareeva, JETP 113 (2011) 628.‎


54. ‎ R Kh Karimov, R N Izmailov, and K K Nandi, Eur. Phys. J. C 79 (2019) 952.‎


55. ‎ N Riazi, S S Hashemi, S N Sajadi, and S Assyyaee, Can. J. Phys. 94 (2016) 1093.‎


56. ‎ C Bambi, “Black Holes: A Laboratory for Testing Strong Gravity”, Springer, Singapore ‎‎(2017).‎


57. ‎ S Chandrasekhar, “An Introduction to the Study of Stellar Structure”, University of ‎Chicago, Chicago, (1939).‎


58. ‎ S L Shapiro and S A Teukolsky, “Black Holes, White Dwarfs and Neutron Stars”, John‎ Wiley and Sons, New York, (1983).‎


59. ‎R Kippenhahn and A Weigert, “Stellar Structure and Evolution” ,Springer Verlag, Berlin(1990).‎


60. ‎ A Kovetz, Astrophys. J. 154 (1968) 999.‎


61. ‎ M Jamil, P K F Kuhfittig, F Rahaman, and Sk A Rakib, Eur. Phys. J. C 67 (2010) 513.‎


62. ‎ L Herrera and W Barreto, Phys. Rev. D 88 (2013) 084022.‎


63. F S N Lobo, Phys. Rev. D 75 (2007) 024023.

ارتقاء امنیت وب با وف ایرانی