Document Type : Original Article

Author

Department of theoretical and astrophysics, Faculty of Physics, University of Tabriz, Tabriz, Iran‎ ‎ ‎

Abstract

The Jaynes-Cummings model is the canonical model for atom-light interactions, describing ‎a single confined bosonic mode interacting with a two-level system (qubit). This is ‎sufficient to describe a wide range of phenomena in quantum optics and quantum ‎computing. We simulate the dynamics of this model using the hybrid quantum-classical ‎algorithm (HQCA) consisting of quantum and classical computers. The parametric quantum ‎state preparations and quantum measurements are performed on the quantum computer ‎and parameters optimization employ on the classic computer. For implement of hybrid ‎quantum-classical algorithms, the Noisy Intermediate Scale Quantum (NISQ) computer is ‎used. In Noisy Intermediate Scale Quantum computers, we don’t need to error correction.  ‎For this purpose, we transform Hamiltonian to qubit form and using an algorithm to obtain ‎the dynamic of the Jaynes-Cummings model. We obtain occupation probability and ‎transition probability in the Jaynes-Cummings model using the hybrid quantum-classical ‎algorithm. The output of the algorithm is compatible with the exact calculation‎‎‎‎.‎

Keywords

  1.         E T Jaynes, and F W Cummings, Proceedings of the IEEE51,1 (1963) 89.

  2. D Gerace, et al., Nature Physics, 5, 4 (2009) 281.

  3. J Kukliński, and J Madajczyk, Physical Review A37, 8 (1988) 3175.

  4. A Gomes, and A Vidiella-Barranco, Applied Mathematics & Information Sciences  8, 2 (2014) 727.

  5. C Law, and J Eberly, Physical Review Letter 76, 7 (1996) 1055.

  6. F W Strauch, K Jacobs, and R W Simmonds, Physical Review Letters  105, 5 (2010) 050501.

  7.         A M Childs, and I L Chuang, Physical Review A63, 1 (2000) 012306.

  8.         R Juárez-Amaro, A Zuñiga-Segundo, and H Moya-Cessa, Applied Mathematics & Information Sciences 9, 1 (2015) 299.

  9. R P Feynman, Int. J. Theor. Phys21 (1999) 6.

  10. A Peruzzo, et al., Nature communications  5 (2014) 4213.

  11. P J O’Malley, et al., Physical Review X6, 3 (2016) 031007.

  12. Y Li, and S C Benjamin, Physical Review X7, 2 (2017) 021050.

  13. O Higgott, D Wang, and S Brierley, Quantum 3 (2019) 156.

  14. E Farhi, J Goldstone, and S Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, (2014).

  15. F Cummings, Physical Review  140, 4A (1965) A1051.

  16. B W Shore, Journal of Modern Optics54, 13-15 (2007) 2009.

  17. R Bose, et al., Nature Photonics  8, 11 (2014) 858.

  18. J Fink, et al., Nature 454, 7202 (2008) 315.

  19. B W Shore and P L Knight, Journal of Modern Optics 40, 7 (1993) 1195.

  20. R Somma, et al., International Journal of Quantum Information 1, 02 (2003) 189.


ارتقاء امنیت وب با وف ایرانی