Document Type : Original Article

Authors

1 Physics Department, Faculty of Basic Sciences, Shahed University, Tehran, Iran

2 Physics Department, Faculty of Basic Sciences, Shahed University, Tehran

Abstract

Considering the position-dependent effective mass in the study of quantum mechanical systems, a wide range of solvable potentials has been obtained. These potentials are obtained by applying canonical transformations to the Schrödinger equation. In this method, the internal functions introduced by Levai for solvable potentials with constant mass have been used, and the eigenfunctions and eigenvalues have been fully obtained. The eigenfunction of these solvable potentials can be obtained based on specific known functions (Jacobian, generalized Laguerre, and Hermit polynomials). Some of these potentials are Scarf-II, Pöschl-Teller, Rosen-Mörse-II and Eckart, whose applications have been described in physical systems. Finally, all the results are placed in a table and the figures of the desired functions is drawn for specific values

Keywords

Main Subjects

  1. O M Von Roos, Physical Review B 27 (1983) 7547.
  2. G Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures; Monographies de Physique, Les Éditions de Physique”, EDP Sciences (1988).
  3. P Rings and P Schuck, “The Nuclear Many Body Problem”, Springer Verlag (1980).
  4. L I Serra and E Lipparini, Europhysics Letters 40 (1997) 667.
  5. A Puente, L Serra, and M Casas, Zeitschrift für Physik D Atoms, Molecules and Clusters 31 (1994) 283.
  6. M R Geller and W Kohn, Physical Review Letters 70 (1993) 3103.
  7. F Arias de Saavedra, et al., Physical Review B 50 (1994) 4248.
  8. M Barranco, et al., Physical Review B 56 (1997) 8997.
  9. D J Bendaniel and C B Duke, Physical Review Journals Archive 152 (1966) 683.
  10. D Bessis and G Mezincescu, Microelectronics Journal 30 (1999) 953.
  11. V Milanovic and Z Ikonic, Physical Review B 54 (1996) 1998.
  12. Y Alhassid, F Gursey, and F Iachello, Annals of Physics 167 (1986) 181.
  13. G Levai, Journal of Physics A: Mathematical and General 27 (1994) 3809.
  14. J W Dabrowska, A Khare, and U P Sukhatme, Journal of Physics A: Mathematical and General 21 (1988) L195.
  15. G Levai, Journal of Physics A: Mathematical and General 22 (1989) 689.
  16. R De, R Dutt, and U Sukhatme, Journal of Physics A: Mathematical and General 25 (1992) L843.
  17. L Infeld and T E Hull, Reviews of Modern Physics 23 (1951) 21.
  18. E Witten, Nuclear Physics B 185 (1981) 513.
  19. L E Gendenshtein, JETP Letters 38 (1983) 356.
  20. F Cooper, A Khare, and U Sukhatme, Physics Reports 251 (1995) 267.
  21. M J Engelfield and C Quesne, Journal of Physics A: Mathematical and General 24 (1991) 3557.
  22. V Milanovic and Z Ikonic, Journal of Physics A: Mathematical and General 32 (1999) 7001.
  23. A R Plastino, et al., Physical Review A 60 (1999) 4318.
  24. B Gonul, et al., Modern Physics Letters A 17 (2002) 2057.
  25. C Quesne and V M Tkachuk, Journal of Physics A: Mathematical and General 37 (2004) 10095.
  26. B Roy and P Roy, Journal of Physics A: Mathematical and General 35 (2002) 3691.
  27. C Quesne and V M Tkachuk, Journal of Physics A: Mathematical and General 37 (2004) 4267.
  28. B Bagchi, et al., Journal of Physics A: Mathematical and General 38 (2005) 2929.
  29. R Koc and M Koca, Journal of Physics A: Mathematical and General 36 (2003) 8105.
  30. A D Alhaidari, Physical Review A 66 (2002) 042116.
  31. B Bagchi, et al., Modern Physics Letters A 19, 37 (2004) 2765.
  32. B Bagchi, Europhysics Letters 72 (2005) 155.
  33. H Panahi and Z Bakhshi, Acta Physica Polonica B 41 (2010) 11.
  34. X Q Zhao, C S Jia, and Q B Yang, Physics Letters A 337 (2005) 189.
  35. A J Peter and K Navaneethakrishnan, Physica E 40 (2008) 2747.
  36. S Rajashabala and K Navaneethakrishnan, Brazilian Journal of Physics 37 (2007) 1134.
  37. S Rajashabala and K Navaneethakrishnan, Modern Physics Letters B 24 (2006) 1529.
  38. Y X Li, J J Liu, and X J Kong, Journal of Applied Physics 88 (2000) 2588.
  39. R Khordad and B Mirhosseini, J. of Phys. Res. 13 (2014) 375.
  40. H Li and D Kusnezov, Physical Review Letters 83 (1999) 1283.
  41. D EAlvarez Castillo and M Kirchbach, Revista Mexicana de Física E 53 (2007) 143.
  42. J P Antoine, et al., Journal of Mathematical Physics 42 (2001) 2349.
  43. D B Hayrapetyan, E M Kazaryan, and H Kh Tevosyan, Superlattices and Microstructures 64 (2013) 204.
  44. G Levai, et al., Physics Letters A 381 (2017) 1936L.
  45. B N Pratiwi, et al., Pramana 88 (2017) 1.
  46. R L Brown, Journal of Research of The National Bureau of Standards 86 (1981) 20234.
  47. F Taskin and G Koçak, Chinese Physics B 19 (2010) 090314
  48. Y Sun, S He, and C S Jia, Physica Scripta 87 (2013) 025301.
  49. N Rosen and P M Morse, Physical Review 42 (1932) 210.

ارتقاء امنیت وب با وف ایرانی