Document Type : Original Article

Author

Physics Department, Bu-Ali Sina University

Abstract

In this work, we consider a topological Josephson junction that contains conventional superconductors and ferromagnet leads on the surface of three-dimensional topological insulators. We use Bogoliubov-deGennes formalism to show in-plane magnetization with a component perpendicular to the superconductor interface that alters the Andreev bound states and creates an Andreev zone. This effect reduces the magnitude of the supercurrent. Also, magnetization changes the spin arrangement of surface states and creates spin-polarized supercurrent. Because of strong spin-momentum interaction on topological insulators, the spin-polarized supercurrent has in-plane components with maximum value in m_x~Δ_0⁄2. On the other hand, the parallel component of in-plane magnetization creates an anomalous supercurrent that flows in the absence of a superconducting phase difference. The dissipation-less spin-polarized supercurrent has great importance from the application point of view in designing spintronics devices.

Keywords

Main Subjects

  1. P R Wallace, Rev. 71 (1947) 622.
  2. J C Slonczewski and P R Weiss, Rev. 109 (1958) 272.
  3. S Reich, et al., Rev. B 66 (2002) 035412.
  4. K S Novoselov, et al., Science 306 (2004) 666.
  5. K S Novoselov, et al., Nature 438 (2005) 197.
  6. A K Geim and K S Novoselov, Mater. 6 (2007) 183.
  7. A H Castro Neto, et al., Mod. Phys. 81 (2009) 109.
  8. F D M Haldane, Rev. Lett. 61 (1988) 2015.
  9. R Jackiw and P Rossi, Phys. B 190 (1981) 681.
  10. C L Kane and E J Mele, Rev. Lett. 95 (2005) 226801.
  11. C L Kane and E J Mele, Rev. Lett. 95 (2005) 146802.
  12. L Fu and C L Kane, Phys Rev B 76 (2007) 045302.
  13. L Fu, C L Kane and E J Mele, Phys Rev Lett 98 (2007) 106803.
  14. D Hsieh, et al., Nature 452 (2008) 970.
  15. D Hsieh, et al., Nature 460 (2009) 1101.
  16. D Hsieh, et al., Science 323 (2009) 919.
  17. Y Xia, et al., Nat Phys 5 (2009) 398.
  18. M Z Hasan and C L Kane, Rev Mod Phys 82 (2010) 3045.
  19. J Linder, et al., Phys Rev B 81 (2010) 184525.
  20. S Mondal, et al., Phys Rev B 82 (2010) 045120.
  21. Z P Niu, J App. Phys. 108 (2010) 103904.
  22. X-L Qi and S-C Zhang, Mod. Phys. 83 (2011) 1057.
  23. Y Tanaka, T Yokoyama and N Nagaosa, Rev. Lett. 103 (2009) 107002.
  24. J Linder, et al., Rev. Lett. 104 (2010) 067001.
  25. T Yokoyama, Y Tanaka, and N Nagaosa, Rev. B 81 (2010) 121401.
  26. M Salehi, et al., Physica E 43 (2011) 966.
  27. R Beiranvand and M Salehi, Phys. Cond. Matt. (2021)
  28. M Salehi, Physica Scripta 98 (2023) 025822.
  29. A F Andreev, Phys. JETP 19 (1964) 1228
  30. G E Blonder, M Tinkham, and T M Klapwijk, Phys, Rev. B 25 (1982) 4515.
  31. P G deGennes, "Superconductivity of metals and alloys",Westview Press (1966).
  32. J B Ketterson and S N Song, "Superconductivity",Cambridge University (1999).
  33. T Miyazaki and H Jin, "The physics of ferromagnetism",Springer (2012).
  34. F S Bergeret, A F Volkov, and K B Efetov, Mod. Phys. 77 (2005) 1321.
  35. A I Buzdin, Mod. Phys. 77 (2005) 935.
  36. A Manchon, et al., Mod. Phys. 91 (2019) 035004.
  37. J Linder and J W A Robinson, Phys. 11 (2015) 307.
  38. B D Josephson, Lett. 1 (1962) 251.
  39. I Vobornik, et al., letters 11 (2011) 4079.
  40. D Pesin and A H MacDonald, Mater. 11 (2012) 409.
  41. Y S Hor, et al., Rev. Lett. 104 (2010) 057001.
  42. T D Stanescu, et al., Rev. B 81 (2010) 241310.
  43. L Maier, et al., Rev. Lett. 109 (2012) 186806.
  44. M Titov and C W J Beenakker, Rev. B 74 (2006) 041401.
  45. M Maiti and K Sengupta, Phys Rev B 76 (2007) 054513.
  46. M J M de Jong and C W J Beenakker, Phys Rev Lett 74 (1995) 1657.
  47. L Fu and C L Kane, Phys Rev Lett 100 (2008) 096407.
  48. J Linder, et al., Phys Rev B 80 (2009) 094522.
  49. J Linder, et al., Phys Rev Lett 100 (2008) 187004.
  50. A Costa and J Fabian, Rev. B 101 (2020) 104508.
  51. E I Rashba, Rev. B 68 (2003) 241315.
  52. A G Mal'shukov, Rev. B 100 (2019) 035301.

تحت نظارت وف ایرانی