Document Type : Original Article

Authors

1 Department of Physics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

2 Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran

Abstract

The temperature turbulence generated by the ponderomotive force of the high-power laser can significantly modify P-11B fusion reactivity. The results of this study have shown that higher temperature turbulence leads to an increased requirement for the confinement parameter in P-11B fuel. As a result, achieving ignition necessitates greater driver energy and a longer development time. Additionally, a 50% reduction in the temperature turbulence parameter yields a substantial 71% decrease in the confinement parameter, accompanied by a 21% increase in the maximum fusion energy fraction. When the temperature turbulence exceeds a value of 10, the bremsstrahlung surpasses the fusion power, making ignition unattainable. The findings underscore the importance of maintaining temperature turbulence below 1 to approach the ignition conditions required for P-11B fuel.

Keywords

Main Subjects

  1. S Atzeni, M Temporal, and J J Honrubia, Fusion 42 (2002) L1.
  2. J Bahmani, Pramana 96 (2022) 137.
  3. S Eliezer, et al., Plasmas 23 (2016).
  4. S Abolhasani, M Habibi, and R. Amrollahi, Fusion Energy 32 (2013) 189.
  5. S N Hosseini Motlagh, S S Mohamadi, and R. Shamsi,  Fusion Energy27 (2008) 161.
  6. R Khoramdel, S N Hosseinimotlagh, and Z Parang, Pramana 97 (2023) 156.
  7. M Mahdavi and S Rohaninejad, Fusion Energy 31 (2012) 437.
  8. H R Yousefi, et al., Physics Letters A 373 (2009) 2360.
  9. J M Martinez Val, et al., Lett. A 216 (1996) 142.
  10. S Eliezer and J M Martinez Val, Laser Part. Beams 16 (1998) 581.
  11. P Lalousis, et al., Fusion Energy 34 (2015) 62.
  12. H Hora, et al., Laser Part. Beams 35 (2017) 730.
  13. B Chen, et al., APS Division of Plasma Physics Meeting Abstracts, UP10-058 (2019).
  14. S Eliezer and J M Martinez Val, Laser Part. Beams 38 (2020) 39.
  15. S Eliezer, et al., Phys. 8 (2020) 573694.
  16. H Hora, S Eliezer, and N Nissim, Laser Part. Beams 2021 (2021) 1.
  17. J Badziak, S Jablonski, and J Woowski, Plasma Phys. Contr. Fusion 49 (2007) B651.
  18. A Bret, Astrophys. J. 699 (2009) 990.
  19. M Mahdavi and F Khodadadi Azadboni, Plasmas 22 (2015) 032704.
  20. S Belghit and A Sid, Pramana87 (2016) 1.
  21. L Palodhi, et al., Pramana 93 (2019) 10.
  22. F Khodadadi Azadboni, J. Phys. 71 (2021) 375.
  23. P H Yoon, et al., Not. R Astron. Soc. 509 (2022) 4736.
  24. Li Xing and S R Habbal, Geophys. Res. Space Phys. 105 (2000) 27377.
  25. S Amininasab, R Sadighi-Bonabi, and F. Khodadadi Azadboni, Plasmas25 (2018)  022122.
  26. S Amininasab, R Sadighi-Bonabi, and F. Khodadadi Azadboni, Plasma Phys.59 (2019) e201800111.
  27. S Eliezer, et al., Laser Part. Beams 33 (2015) 577.
  28. M Najjar and B Khanbabaei, Plasmas 26 (2019) 32709.
  29. L O Silva, et al., Plasmas 9 (2002) 2458.
  30. J D Huba, “NRL Plasma Formulary” Naval Research Laboratory, Washington, DC, (2006).

ارتقاء امنیت وب با وف ایرانی