Document Type : Original Article
Authors
1 Alzahra University
2 University of Zanjan
Abstract
The behavior of a liquid crystal polarization grating mixed with magnetic nanoparticles under magnetic and laser optical fields is investigated in the framework of the elastic continuum theory. The transition between the equilibrium and distorted states of the system is obtained for different volume fractions of nanoparticles under strong and weak anchoring conditions on the boundary surfaces. The phase diagram of the system indicates that higher threshold fields are required for the transition as the volume fraction of nanoparticles increases. Also, using the Ericksen–Leslie theory, the system’s dynamic is investigated and the response times in the on and off states are calculated. The results reveal the effect of the presence of nanoparticles and the anchoring strength on the response times. These results are consistent with existing experimental reports and can be useful in many liquid crystal-based devices, including displays and beam- guiding devices.
Keywords
Main Subjects
- I C khoo, “Liquid crystals”, John Jiely & Jons, New Jersey (2007).
- P G De Gennes and J Prost, “The physics of liquid crystals”, Oxford Sience Publications (1995).
- T Kato, et al., Chem., Int. Ed. 57 (2018) 4355.
- A Schenning, G P Crawford, and D J Broer, “Liquid Crystal Sensors”, CRC Press, Taylor and Francis Group (2017).
- M H Pourasl, et al., Rep.13 (2023) 6847.
- J Tang, et al., Photonic Sens. 14 (2024) 240203.
- F Brochard and P G De Gennes, Phys. 31 (1970) 691.
- S Shoarinejad and R M Siahboomi, Appl. Phys. 129 (2021) 025101.
- C Cirtoaje, et al., Surf. Sci. 487 (2019)1301.
- E Petrescu and C Cirtoaje, Nanomater. 12 (2022) 1119.
- P K Mukherjee, Magn. Magn. Mater. 604 (2024) 172309.
- S Shoarinejad and M Ghazavi, Soft Mater.15 (2017) 173.
- L Gulati, et al., Funct. Mater. 35 (2025) 2413513.
- Z Keikavousi, S Shoarinejad, and M R Mozaffari, J. Phys. 10 (2020) 29.
- R Naseri and S Shoarinejad, Cryst. 47 (2020) 1863.
- Y H Lee, K Yin, and S T Wu, Express 25 (2017) 27008.
- Y Weng, et al., Lett. 43 (2018) 5773.
- G Tan, et al., Express 26 (2018) 25076.
- T Zhan, et al., Soc. Inf. Disp. 27 (2019) 223.
- M J Escuti and W M Jones. Proceedings of SPIE Optics & Photonics Conference, San Diego, CA. 13–17 Aug (2006).
- W M Jones, B Conover, and M J Escuti. Int. Symp. Digest. Tech. Papers. 37 (2006) 1015.
- R K Komanduri and M J Escuti, Rev. E 76 (2007) 021701.
- E Petrescu, R E Bena, and C Cirtoaje, Magn. Magn. Mater. 336 (2013) 44.
- R E Bena and E Petrescu, Magn. Magn. Mater. 248 (2002) 336.
- R E Bena and E Petrescu, Magn. Magn. Mater. 320 (2008) 299.
- N Podoliak, et al., Adv. 4 (2014) 46068.
- N Sebastian, et al., Mol. Liq. 267 (2018) 377.
- A S Zolotko, et al., Lett. 32 (1980) 158.
- B Y Zeldovich and N V Tabirian, Phys. JETP. 55 (1982) 656.
- N V Tabirian, A V Sukhov, and B Y Zeldovich, Cryst. Liq. Cryst. 136 (1986) 1.
- J N Eakin, et al., Phys. Lett. 85 (2004) 1671.
- C Oh, R K Komanduri, and M J Escuti. Int. Symp. Digest. Tech. Papers. 37 (2006) 844.
- H Sarkissian, et al., 2005 Quantum Electronics and Laser Science Conference, Baltimore, MD. 22–27 May (2005).
- I W Stewart, “The static and dynamic continuum theory of liquid crystals”, Taylor and Francis (2004).
- J L Ericksen, Ration. Mech. Anal. 4 (1960) 231.
- J L Ericksen, Ration. Mech. Anal. 9 (1962) 371.
- F M Leslie, Ration. Mech. Anal. 28 (1968) 265.
- E Petrescu, R E Bena, and C Cirtoaje, Magn. Magn. Mater. 336 (2013) 44.
- E Petrescu, C Motoc, and D Manaila, Phys. Lett. B. 14 (2000) 139.