Document Type : Original Article

Authors

Faculty of Physics, University of Isfahan (UI), Isfahan 81746-73441, Iran

Abstract

The study of many-body quantum systems, that fail to thermalize in the presence of disorder, has recently attracted lots of interests. This is due to the appearance of the many-body localized phase and breakdown of eigenstate thermalization hypothesis in such systems which can be described by the local integrals of motion. In this paper, we consider a disordered spin chain in the many-body localized phase and try to study the dynamics of entanglement generation in this system using the local integrals of motion. To this end, we, first, solve the non-interacting system analytically to describe the mechanism of entanglement generation for different kinds of initial states, exactly. Then, we generalize this approach to the interacting system to learn the dynamics of entanglement generation. Finally, we discuss the physical meaning of different behaviors in the dynamics of entanglement generation in the presence and absence of interaction.‎

Keywords

  1. D M. Basko, I L Aleiner, and B L Altshuler, Rev. B 76 (5) (2007) 052203 .
  2. I V Gornyi, A D Mirlin, and D G Polyakov, Rev. Lett. 95 (2005) 206603.
  3. D A Abanin, E Altman, I Bloch, and M Serbyn, Mod. Phys. 91 (2019) 021001.
  4. R Nandkishore and D A Huse, Rev. Condens. Matter Phys. 6 (2015) 15
  5. D A Abanin and Z Papic, Annalen der Physik 529 (2017) 1700169.
  6. C Gogolin and J Eisert, Prog. Phys. 79 (2016) 056001.
  7. M Schreiber, S S Hodgman, P Bordia, H P Luschen, M H Fischer, R Vosk, E Altman,U Schneider, and I Bloch, Science 349 (2015) 842.
  8. M Srednicki, Rev. E 50 (1994) 888.
  9. P W Anderson, Rev. 109 (1958) 1492.
  • E Abrahams, P W Anderson, D C Licciardello, and T V Ramakrishnan, Rev. Lett. 42 (1979) 673.
  • V Oganesyan and D A Huse, Rev. B 75 (2007) 155111.
  • J Imbrie, Rev. Lett. 117 (2016) 027201.
  • J Imbrie, Journal of Statistical Physics 163, 5 (2016)
  • A Pal and D A Huse, Rev. B 82 (2010) 174411.
  • M Serbyn, M Knap, S Gopalakrishnan, Z Papic, N Y Yao, C R Laumann, D A Abanin, M D Lukin and, E A Demler, Rev. Lett. 113 (2014) 147204.
  • A Lukin, M Rispoli, R Schittko, M E Tai, A M Kaufman, S Choi, V Khemani, J Léonard, and M Greiner, Science 364 (2019) 256.
  • M Serbyn, Z Papic, and D A Abanin, Rev. Lett. 111 (2013) 127201.
  • A Chandran, I H Kim, G Vidal, and D A Abanin, Rev. B 91 (2015) 085425.
  • F Iemini, A Russomanno, D Rossini, A Scardicchio, and R Fazio, Rev. B 94 (2016) 214206.
  • J Gray, A Bayat, A Pal, and S Bose, Bulletin of the American Physical Society 65 (2020).
  • H Singh, B Ware, R Vasseur, and S Gopalakrishnan, Rev. B 103, 22 (2021) L220201.
  • J Šuntajs, J Bonča, T Prosen, and L Vidmar, Rev. B 102, 6 (2020) 064207.
  • P T Dumitrescu, A Goremykina, S A Parameswaran, M Serbyn, and R Vasseur, Rev. B 99, 9 (2019) 094205.
  • A Goremykina, R Vasseur, and M Serbyn, Rev. Letters 122, 4 (2019) 040601.
  • A Morningstar and D A Huse, Rev. B 99, 22 (2019) 224205.
  • A Morningstar, D A Huse, and J Z Imbrie, Rev. B 102, 12 (2020) 125134.
  • E V Doggen, I V Gornyi, A D Mirlin, and D G Polyakov, Annals of Physics 435 (2021) 168437.
  • P Jordan and E Wigner, Phys. 47 (1928) 631.
  • M Goihl, M Gluza, C Krumnow and J Eisert, Rev. B 97 (2018) 134202.
  • V Ros, M Müller, and A Scardicchio, Nuclear Physics B 891 (2015) 420.
  • T Orito and I Ken-Ichiro, Rev. B 103 (21) (2021) 214206.
  • R Vosk, D A Huse, E Altman, Rev. X 5 (3) (2015) 031032.
  1. A C Potter, R Vasseur and S A Parameswaran, Rev. X 5, 3 (2015) 031033.