نویسندگان

گروه شیمی فیزیک، دانشکده علوم پایه، دانشگاه ملایر

چکیده

در این تحقیق، ساختار پارامترهای کوانتومی و NQR فرایند جذب گاز 2F بر روی مدل‌های خالص و جایگزین شده با سه کربن نانو لوله بورن فسفید با استفاده از نظریه تابع چگالی بررسی شده است. برای این منظور در ابتدا چهار مدل برای جذب 2F بر روی سطح داخلی و خارجی حالت خالص و جایگزین شده با سه کربن را در نظر گرفته و سپس تمام ساختارها بهینه می‌شوند. ساختارهای بهینه شده برای محاسبه پارامترهای کوانتومی و NQRاستفاده شده‌اند.

     نتایج حاصل از محاسبات نشان می‌دهند که انرژی جذب مدل‌های حالت خالص و جایگزین شده با سه کربن BPNTs گرماده بوده و فرایند جذب از نوع فرایند فیزیکی است که مربوط به بر هم کنش واندر‌والسی است. جایگزینی سه اتم کربن به جای بور باعث کاهش انرژی جذب می‌شود. جذب 2F و جایگزینی سه اتم کربن باند گاف، سختی کروی و پتانسیل یونش BPNTs از مقدار اولیه‌اش را کاهش می‌دهد. نتایج حاصل از پارامترهای NQR محاسبه شده در تمام مدل‌ها نشان می‌دهد که مقادیر CQ و &etaQ اولین لایه بیشتر از سایر لایه‌ها است.

کلیدواژه‌ها

عنوان مقاله [English]

Interaction between F2 gas with the pristine and 3C-doped(4, 4) armchair boron phosphide nanotubes: a DFT study

نویسندگان [English]

  • M Rezaei-Sameti
  • E A Dadfar

چکیده [English]

In this research, the structure, quantum and NQR (Nuclear quadrupole resonance)parameters of F2 gas adsorption on the pristine and 3C-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) have been investigated in the framework of density functional theory. For this purpose, at the first step, four models for F2 adsorption on the inner and outer surfaces of pristine and 3C-doped BPNTS are considered and then all structures are optimized by using Gaussian 03 program package. The optimized structures are used to calculate the quantum and NQR parameters. The calculated results reveal that the adsorption energy of pristine and 3C-doped models of BPNTs are exothermic and adsorption process is a physisorption process due to the weak Van der Waals interaction. The substitution of three carbons with three B atoms of nanotube decreases significantly the adsorption energies. The F2 adsorption and 3C-doping decrease the band gap, global hardness, and ionization potential of the pristine BPNTs. The calculated NQR parameters of all the models show that CQ and &etaQ values of the first layer are larger than those of the other layers.

کلیدواژه‌ها [English]

  • BPNTS
  • NQR
  • F2 adsorption
  • 3C-doped
  • DFT

1. R E Gosselin, R P Smith R P, H C Hodge, Clinical Toxicology of Commercial Products. Baltimore (MD), Williams & Wilkins(1984) 185. 2. L Li, Review Oral Biological Medicine 14 (2003) 100. 3. R C Baselt, “Disposition of Toxic Drugs and Chemicals in Man. Foster City (CA)”, Biomedical Publications (2008) 636. 4. G Nochimson, “Toxicity, Fluoride Medicine Retrieved”, (2008) 12. 5. M L Wu, J F Deng, and J S Fan, “Clinical Toxicology”, Philadelphia, Pa. 48 (2010) 953. 6. A E Klasaer, A J Scalzo, C Blume, and P Johnson, Ann. Emerg. Medicine 28 (1996) 713. 7. J D Shulman, L M Wells. J Pub, Health Den. 57 (1997) 150. 8. M Hichour, F Persin, J Molenat, J Sandeaux, and C Gavach, Desalination 122 (1999) 53. 9. M Hichour, F Persin, J Sandeaux, and C Gavach, Separation Purification Technology 18 (2000) 1. 10. S Saha, Water Research, 27 (1993) 1347. 11. Q Q Tang, J Du, H H Ma, S J Jiang, and X J Zhou, Biological Trace. Element Research 126 (2008) 115. 12. N Park, Y Miyamoto, K Lee, W IhChoi , J I hm, J Yu, and S Han, Chemical Physic Letter 403 (2005) 135. 13. M J O Connell, et al., Science 297 (2002) 593. 14. M Zarei, M Almasi Kashi, A Ramazani, and G Torkashvand, Iranian Journal of Physic Research, 10 (2010) 219. 15. Z Chen, X Du, M H Du, D Rancken, H P Cheng, and A G Rinzler, Nano Letter 3 (2003) 1245. 16. Z Chen, Z C Wu, J Sippel, A G Rinzler, H Kuzmany, J Fink, M Mehring, and S Roth, XVIIIth International Winter school on the Electronic Properties of Novel Materials, American Institute of Physics, Melville, NY (2004) 69. 17. R C Handdon, J Sippel, AG Rinzler, and F Papadimitrakopoulos, MRS Bulletin 29 (2004) 252. 18. Y H Li, S Wang, X Hang, J Wei, C Xu, Z Luan, and D Wu, “Mater Research Bulletin”, 38 (2003) 469. 19. A Margulisa and E E Muryumin, Physica B 390 (2007) 134. 20. H F Bettinger, Chemical Physic Chemstry, 4 (2003) 1283. 21. A Ahmadi, J Beheshtian, and N Hadipour, Structure Chemistry 22 (2011) 183. 22. H F Bettinger, K N Kudin, and G E Scuseria, Journal American Chemistry Society 123 (2001) 12849. 23. Y H Li, S Wang, A Cao, D Zhao, X Zhang, C Xu, Z Luan, D Ruan, J Liang, D Wu, and B Wei, Chemical Physic Letter 350 (2001) 412. 24. W Shi and J K Johnson, Physical Review Letter 91 (2003) 1. 25. A Kuznetsova, J T Yates, J Liu, and R E Smalley, Journal Chemical Physics, 112 (2000) 9590. 26. A Kuznetsova, D B Mawhinney, and V Naumenko, Chemical Physics Letter 321 (2000) 292. 27. C Matranga, L Chen, and M Smith, Physical Chemistry B 107 (2003) 12930. 28. M Rezaei-Sameti and Physica E 44 (2012) 1770. 29. M Rezaei-Sameti and Physica B 407 (2012) 3717. 30. M Rezaei-Sameti and S Yaghobi, Physical Chemistry Research 1 (2013) 90. 31. M Rezaei-Sameti, Physica B 407 (2012) 22. 32. M Rezaei-Sameti, Quantum Matter 2 (2013) 1. 33. J Beheshtian, H Soleymanabadi, M Kamfiroozi and A Ahmadi, Journal Molecular Modelling 18 (2012) 2343. 34. M J Frisch, et al., Gaussian 03 (2003). 35. A D Becke, Journal Chemical Physics 98 (1993) 5648. 36. M T Baei, M Moghimi, P Torabi, and A Varasteh Moradi, Computational Theoretical Chemistry, 972 (2011) 14. 37. R G Parr, L Szentpaly, and S Liu, Journal American Chemical Society, 121 (1999) 1922. 38. P Pyykkö, Molecular Physics 99 (2001) 1617. 39. P K Chattaraj, USarkar, and DR Roy, Chemical Review, 106 (2006) 2065. 40. K K Hazarika, N C Baruah, and R C Deka, Structural Chemistry, 20 (2009) 1079. 41. M T Baei, M Moghimi, P Torabi, and A Varasteh Moradi, Computational Theoretical Chemistry, 972 (2011) 14.

تحت نظارت وف بومی