نویسندگان

1 مرکز ملی علوم و فنون لیزر ایران، تهران

2 دانشگاه بین المللی امام خمینی(ره)، قزوین

چکیده

در این مقاله اثر میزان شار اکسیژن هنگام لایه‌نشانی بر روی ضریب شکست لایه اکسید آلومینیوم بررسی شده است. لایه‌های  توسط تفنگ الکترونی بر روی زیرلایه شیشه‌ای در شارهای متفاوت اکسیژن انباشته شده‌اند. درجه حرارت زیرلایه در زمان لایه‌نشانی 250 درجه سلسیوس ثابت نگه داشته می‌شود. طیف عبوری نمونه‌ها با استفاده از اسپکتروفوتومتر در محدوده طول موجی  اندازه‌گیری شده‌اند. سپس با استفاده از نقاط بهینه (بیشینه یا کمینه) منحنی عبور، ضریب شکست و ضریب خاموشی نمونه‌ها محاسبه می‌شوند. نتایج نشان می‌دهد که با کاهش شار اکسیژن، در حالی که نرخ تبخیر ثابت نگه‌ داشته شده است، ضریب شکست لایه‌های  کاهش می‌یابد. از طرف دیگر، کاهش شار اکسیژن باعث ایجاد مقدار کمی جذب در لایه می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

نویسندگان [English]

  • R Shakouri 1
  • H Haydari 2

چکیده [English]

The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

کلیدواژه‌ها [English]

  • aluminum oxide film
  • extinction coefficient
  • refractive index

1. E Ciliberto, I Fragala, R Rizza, G Spoto, and G C Allen, Appl. Phys. Lett. 67 (1995) 1624. 2. K P Pande, V K R Nair, and D Gutierrez, J. Appl. Phys. 54 (1983) 5436. 3. P Vuoristo, T Mäntylä, P Kettunen, and R Lappalainen, Thin Soil Films 204 (1991) 297. 4. S Jakschik, A Avellan, U Schroeder, and J Bartha IEEE Trans. Electron. Dev. 51 (2004) 2252. 5. W H Ha, M H Choo, and S Lm, Journal of Non-Crystalline Solids 78 (2002) 303. 6. B G Segda, M Jacquet, and J P Besse, Vacuum 62 (2001) 27. 7. A Khanna, D G Bhat, A Harris, and B D Beake, Surf. Coat. Technol. 201 (2006) 1109. 8. F Fietzke, K Goedicke, and W Hempel, Surf. Coat. Technol. 86 (1996) 657. 9. O Zywitzki, K Goedicke, and H Morgner. Surf. Coat. Technol. 14 (2002) 151. 10. P V Patil, D M Bendale, R K Puri, and V Puri. Thin Solid Films 288 (1996) 120. 11. C H Lin, H L Wang, and M H Hon, Thin Solid Films 283 (1996) 171. 12. Z W Zhao, B K Tay, S P Lau, and C Y Xiao, J. Vac. Sci. Technol. A 21 (2003) 906. 13. M Aguilar Frutis, M Garcia, C Falcony, G Plesch, and S Jimenez Sandoval, Thin Solid Films 389 (2001) 200. 14. P O Nilsson, Appl. Opt. 7 (1968) 435. 15. R C McPhedran, L C Botten, D R McKenzie, and R P Netterfield, Appl. Opt. 23 (1984) 1197. 16. E A A El-Shazly, I T Zedan, and K F Abd El-Rahman, Vacuum 86 (2011) 318. 17. H E Atyia, and N A Hegab, Physica B 454 (2014) 189. 18. J S Ross, R A Mailman, D J Kester, and J D Wisnosky, Proc. Soc. Vac. Coalers 38 (1995) 81. 19. “Essential MacLeod”, Thin Film Center Inc., Tucson, AZ, USA, http://www.thinfilmcenter.com/. 20. D Minkov, J. Opt Soc. Am. A 8 (1991) 306. 21. W C Olive and G M Pharr, J. Mater. Res. 7 (1992) 1564. 22. N Maiti et al., Vacuum 85 (2010) 214. 23. S Shuzhen, C Lei, H Haihong, Y Kui, F Zhengxiu, and S Jianda, Applied Surface Science 242 (2005) 437. 24. K S Shamala, L C S Murthy, and K Narasimha Raob, Materials Science and Engineering B 106 (2004) 269. 25. S K Kim, S W Lee, C S Hwang, Y S Min, J Y Won, and J Jeong, J. of the Electrochemical Society 153 (2006) F 69. 26. N Reddy, V Rajagopal, N Sridhara, S Basavaraja, and

تحت نظارت وف بومی