نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

در این کار با استفاده از نظریه پیمایش تصادفی، فرایند خشک شدن در محیط‌های متخلخل را مدل‌سازی می‌کنیم. بدین منظور ابتدا وابستگی نرخ خشک‌شدگی به کمیت‌های میکروسکوپی به دست آمده از پیمایش تصادفی را مورد مطالعه قرار می‌دهیم. سپس رابطه بین نرخ خشک‌شدگی و مقدار رطوبت را در حضور همرفت به دست می‌آوریم. نتایج به دست آمده در این مطالعه، اثر همرفت در فرایند خشک‌سازی در محیط‌های متخلخل را به تصویر می‌کشد.

کلیدواژه‌ها

عنوان مقاله [English]

Thermodynamic properties of and Nuclei using modified Ginzburg-Landau theory

نویسندگان [English]

  • V Dehghani
  • A A Mehmandoost-Khajeh-Dad
  • P Mohammadi

چکیده [English]

In this paper, formulation of Modified Ginsberg – Landau theory of second grade phase transitions has been expressed. Using this theory, termodynamic properties, such as heat capacity, energy, entropy and order parameters ofandnuclei has been investigated. In the heat capacity curve, calculated according to tempreture, a smooth peak is observed which is assumed to be a signature of transition from the paired phase to the normal phase of the nuclei. The same pattern is also observed in the experimental data of the heat capacity of the studied nuclei. Calculations of this model shows that, by increasing tempreture, expectation value of the order parameter tends to zero with smoother slip, comparing with Ginsberg – Landau theory. This indicates  that the pairing effect exists between nucleons even at high temperatures. The experimental data obtained confirms the results of the model qualitatively.

کلیدواژه‌ها [English]

  • phase transition
  • Ginsberg – Landau
  • fluctuations
  • pairing
  • order parameter

1. S Havlin and D Ben-Avraham, Advances in Physics 51 (2002) 187. 2. M Mehrafarin and M Faghihi, Physica A 301 (2001) 163. 3. A Taloni, A Chechkin, and J Klafter, Phys. Rev. Lett. 104 (2010).160602. 4. A Taloni, A Chechkin, and J Klafter, Phys. Rev. E 82 (2010) 061104. 5. I Podlubny, “Fractional Differential Equations”, Academic Press, San Diego (1999). 6. K B Oldham and J Spanier, “The Fractional Calculus”, Academic Press, New York (1974). 7. K S Miller and B Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations”, Wiley-Interscience (1993). 8. S G Samko, A A Kilbas, and O I Marichev, “Fractional Integrals and Derivatives”, Gordonand Breach Science Publishers, Amsterdam (1993). 9. R Metzler and J Klafter, Phys. Rep. 339 1 (2000). 10. M Weissman, Rev. Mod. Phys. 60 (1988) 537. 11. M Shlesinger, Annu. Rev. Phys. Chem. 39 (1988) 269 12. G M Zaslavsky, Phys. Rep. 371 (2002) 461. 13. A I Saichev and G M Zaslavsky, Chaos 7 (1997) 753. 14. V V Uchaikin, J. Exper. Theor.Phys. 97 (2003) 810. 15. M M Meerschaert, D A Benson, and B Baeumer, Phys. Rev. E 63 (2001) 021112. 16. V E Tarasov, Phys. Rev. E 71 (2005) 011102. 17. V E Tarasov, J. Phys. A 38, (2005) 5929. 18. N Laskin and G M Zaslavsky, Physica A 368 (2005) 38. 19. V E Tarasov and G M Zaslavsky, Chaos 16 (2006) 023110. 20. A Compte, R Metzler, and J Camacho, Phys. Rev. E 56 (1997) 1445. 21. B J West and P Grigolini, “Complex Webs: Anticipating the Improbable”, Cambridge University Press (2011). 22. F Mainardi and P Pironi, Extracta Mathematicae 11 (1996) 140. 23. I Goychuk, Phys. Rev. E 80 (2009) 046125. 24. J H Jeon and R Metzler, Phys. Rev. E 81 (2010) 021103. 25. K Linkenkaer-Hansen, V V Nikouline, J Matias Palva, and R J Ilmoniemi, The Journal of Neuroscience 21 (2001) 1370. 26. R N Mantegna and H E Stanley, Nature 376 (1995) 46. 27. C K Peng, S Havlin, H E Stanley and A L Goldberger, Chaos 5 (1995) 82. 28. J M Coulsont, and J F Richardson, “Chemical Engineering”, 4th Edition, Pergamon Press, Oxford (1993). 29. H Theliander, “Chemical Engineering Design Advanced Course”, 3rd Edition, Chalmers University of Technology, Gothenburg (1999). 30. J G Salin, Drying Tech. 9 (1991) 775.

تحت نظارت وف بومی