نویسندگان

دانشکده فیزیک، دانشگاه کاشان، کاشان

چکیده

با به کارگیری تقریب میدان- میانگین و نیمه کلاسیکی توماس- فرمی، در چهارچوب یک مدل آماری، معادله حالت و خواص بحرانی ماده هسته‌ای متقارن بررسی می‌شود. در این مدل برهم‌کنش دو‌جسمی و پدیده‌شناسی مایرز و شواتکی در فضای فاز به کارگرفته می‌شود. با انجام وردش تابعی انرژی آزاد هلمهولتز کل دستگاه نسبت به تابع توزیع نوکلئونی در فضای فاز برای رسیدن به یک وضعیت تعادل طبق قانون دوم ترمودینامیک، به کمیت‌هایی نظیر جرم مؤثر که تنها تابع چگالی است و پتانسیل مؤثر تک ذره‌ای که بر اساس آن کمیت کلیدی جرم مؤثر تعمیم‌یافته نوکلئونی که علاوه بر چگالی به دما نیز وابستگی دارد، می‌رسیم و بر این اساس به شکل صریح تابع توزیع دست پیدا می‌کنیم. در این مدل کمیت‌های فزونور ترمودینامیکی از قبیل انرژی نهان ، آنتروپی و آزاد هلمهولتز برحسب تابع توزیع به صورت تابعی در فضای فاز به ازای دما و چگالی معین به دست می‌آیند. در این تحقیق توجه خاصی به رفتار بحرانی و پایداری ماده هسته‌ای متقارن شده است. یافته‌های ما در مورد کمیت‌های توصیف کننده رفتار بحرانی ماده هسته‌ای متقارن با نتایج حاصل از مدل‌های مطرح دیگر در این زمینه در توافق است.

کلیدواژه‌ها

عنوان مقاله [English]

Thomas-Fermi calculations for determination of critical properties of symmetric nuclear matter on the basis of extended effective mass approach

نویسندگان [English]

  • M Ghazanfari Mojarrad
  • S K Mousavi Khoreshtami
  • A Mostajeran Gurtani

چکیده [English]

Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied.  In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing  a functional variation of the total Helmholtz free energy of system with respect to the nucleonic distribution function in phase space to reach an equilibrium state according to the second low of thermodynamics, we obtain  expressions for the effective mass which is only density dependent and the effective one-body potential  whereby the key quantity of the extended effective mass with both density and temperature dependency is determined. Accordingly, we reach to the explicit form of distribution function. In this mode, extensive thermodynamic quantities such as, inner energy, entropy and Helmholtz free energy are determined as the functionals of the distribution function for given temperature and density. In this research special attentions has been paid to the critical behavior and stability of symmetric nuclear matter. Our findings about the quantities which describe critical behavior of symmetric nuclear matter are in good agreement with other proposed models.

کلیدواژه‌ها [English]

  • symmetric nuclear matter
  • Thomas-Fermi approximation
  • extended effective mass
  • distribution function

1. B Borderie et al., Nucl. Phys. A 734 (2004) 495. 2. M F Rivet et al., Nucl. Phys. A 749 (2005) 73. 3. N K Glendenning, “Compact Stars,” New York: Springer (1997). 4. H A Bethe, Rev. Mod. Phys. 62 (1990) 801. 5. P Haensel, A Y Potekhin, D G Yakovlev, “Neutron Stars 1: Equation of State and Structure,” Springer Science and Business Media 326 (2007). 6. S L Shapiro and S A Teukolsky, “Black Holes, White Dwarfs and Neutron Stars”, John Wiley and Sons, New York (1983). 7. M Camenzind, “Compact Objects in Astrophysics,” Springer-Verlag, Berlin, Heidelberg (2007). 8. C F von Weizsacker, Z. Phys. 96 (1935) 431. 9. H A Bethe and R F Bacher, Rev. Mod. Phys. 8 (1936) 82. 10. A Rios, A Polls, A Ramos, and H Müther, Phys. Rev. C 78 (2008) 044314. 11. A Rios, A Polls, and I Vidana, Phys. Rev. C 79 (2009) 025802. 12. M Modarres and H R Moshfegh, Prog. Theo. Phys. 112 (2004) 21. 13. B Friedman and V R Pandharipande, Nucl. Phys. A 361 (1981) 502. 14. I E Lagaris and V R Pandharipande, Nucl. Phys. A 359 (1981) 331. 15. R B Wiringa, V Ficks, and A Fabrocini, Phys. Rev. C 38 (1988) 1010. 16. R B Wiringa, V G J Stoks, and R Schiavilla, Phys. Rev. C 51 (1995) 38. 17. A Akmal, V R Pandharipande, and D G Ravenhall, Phys. Rev. C 58 (1998)1804. 18. M Baldo, “Nuclear Methods and the Nuclear Equation of State”, Singapore: World Scientific, (1990). 19. W Zuo, Z H Li, A Li, and U Lombardo, Nucl. Phys. A 745 (2004) 34. 20. M Baldo, A Fiasconaro, H Q Song, G Giansiracusa, and U Lombardo, Phys. Rev. C 65 (2002) 017303. 21. H Huber, F Weber, and M K Weigel, Phys. Rev. C 57 (1998) 3484. 22. G H Bordbar, Iranian Journal of Physics Research 3 (2001) 1. 22. گ ح بردبار، مجله پژوهش فیزیک ایران 3 (1380) 1. 23. D Serot and J D Walecka, Adv. Nucl. Phys. 16 (1986) 1. 24. H Müller and B D Serot, Nucl. Phys. A 606 (1996) 508. 25. H Müller and B D Serot, Phys. Rev. C 52 (1995) 2072. 26. E Chabanat, P Bonche, P Haensel, J Mayer, and R Schaeffer, Nucl. Phys. A 635 (1998) 231. 27. S W Huang, M Z FU, S S Wu, and S D Yang, Mod. Phys. Lett. A 5 (1990) 1071. 28. J Randrup and E Lima Medeiros, Nucl. Phys. A 526, (1991) 115. 29. K Strobel, F Weber, and M K Weigel, ZNaturforschr 54a (1999) 83. 30. H R Moshfegh, M GhazanfariMojarrad, J. Phys. G 15 (2011). 31. W D Myers and W J Swiatecki, Ann. Phys. 204 (1990) 401. 32. W D Myers and W J Swiatecki, Nucl. Phys. A 601 (1996) 141. 33. H R Moshfegh, M Ghazanfari Mojarrad, Eur. Phys. J. A 49.1 (2013) 1. 34. R K Pathria, “Statistical Mechanics,” Oxford: Butterworth-Heinemann (1996). 35. D Alonso and F Sammarruca, Phys. Rev. C 67 (2003) 054301. 36. J Margueron, and Ph Chomaz, Phys. Rev. C 67 (2003) 041602R. 37. Ph Chomaz and C Colonna, J. Randrup, Phys. Rep. 389 (2004) 263. 38. C Ducoin, Ph Chomaz, and F Gulminelli, Nucl. Phys. A 789 (2007) 403. 39. P Wang, Phys. Rev. C 61 (2000) 54904. 40. B V Jacak, C et al., Phys. Rev. Lett. 51 (1983) 1846.

تحت نظارت وف بومی