نویسندگان
1 1. گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابل2. گروه پژوهشی نانو و بیوتکنولوژی، دانشکده علوم پایه، دانشگاه مازندران، بابلسرسر
2 1. گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر
چکیده
در این مقاله به تولید جت پلاسمای سرد فشار اتمسفری گاز آرگون با استفاده از روش تخلیه سد دیالکتریک با سه منبع توان الکتریکی با ولتاژ سینوسی، پالسی و دندانارهای در بسامد یکسان 8 کیلوهرتز پرداختیم. ابتدا ویژگی مدار الکترونیک مورد نظر را برای تولید ولتاژ فشار قوی با شکل ولتاژ خروجی سینوسی، پالسی و دندانارهای توضیح میدهیم. سپس اثر شکل ولتاژ اعمالی در شکست الکتریکی گاز بررسی میکنیم. غلظت نسبی گونههای فعال شیمیایی از جمله اکسیژن، نیتروژن اتمی، رادیکال هیدروکسیل به وسیله بیناب نمایی گسیل نوری اندازهگیری شد. همچنین با استفاده از یک مدل ساده نشان دادیم زمان برخاست کم موجب افزایش چگالی الکترون میشود بنابراین با توان الکتریکی مصرفی پایینتر میتوان یک پلاسمای سرد تولید کرد.
کلیدواژهها
عنوان مقاله [English]
Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet
نویسندگان [English]
- F Sohbatzadeh 1
- M Bagheri 2
- S Motallebi 2
1
2
چکیده [English]
In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV) wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power
کلیدواژهها [English]
- dielectric barrier discharge
- atmospheric pressure cold plasma
- atmospheric plasma jet
2. F Sohbatzadeh, A Hossienzadeh Colagar, S Mirzanejad, S Motallebi, M Farhadi, and M Bagheri, et al., Design and construction of triplet atmospherc cold plasma jet for sterilization. IJPR, 13 (2014) 363.
3. X Lu, T Ye, Y Cao, Z Sun , Q Xiong, Z Tang, Zh Xiongm and Y Pan, “The roles of the various plasma agent s in the inactivation of bacteria”, (2008).
4. G Fridman, G Friedman, A Gustol, A B Shekhte, V N Vasilets, and A Fridman Plasma Process.Polym. 5 (2008) 503.
5. S Mirpour, H Ghomi, S Piroozmand, M Nikkhah, S H Tavassoli, & S Z Azad, “The Selective Characterization of Non thermal Atmospheric Pressure Plasma Jet on Treatment of Human Breast Cancer and Normal Cells”, (2014).
6. A Calvimontes, R Saha, V Dutschk, AUTEX Research J. 11 (2011) 24.
7. C X Wang, Y P Qiu, Surf. & Coat. Tech. 201 (2007) 6273..
8. C X Wang, H L Xu, Y Liu, Y P Qiu, Surf. & Coat Tech. 202 (2008) 2775.
9. Ch Wang, Fibers and Polymers. 11 (2010) 223.
10. D Sun, G K Stylios. J Materials Proc. Tech. 173 (2006) 172.
11. M A Lieberman and A J Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley and Sons, Inc, New York (1994).
12. M Chichina, Z Hubicka, O Churpita, and M Tichy, Plasma Process Polym. 2 (2005) 501.
13. Z Cao, J L Walsh, and M G Kong. Appl. Phys. Lett. 94 (2009) 21501.
14. X Zhang, M Li, R Zhou, K Feng and S Yang. Appl. Phys. Lett. 93 (2008) 21502.
15. H S Park, S J Kim, H M Joh, T H Chung, S H Bac, and S H Leem, Busan, (2010) 604.
16. J Walsh, J J Shi and M G Kong, Applied Physics Letters. 88 (2006) 171501.
17. http://en. Wikipedia.org / Wiki / fly back transformer.
18. Y P Raizer, and J E Allen, “ Gas discharge physics (Vol. 1)”, Berlin: Springer-Verlag (1991).
19. F Sohbatzadeh, A Hossienzadeh Colagar, S Mirzanejad, M Farhadi, M Bagheri,et al., “Design and Construction of triplet atmospheric cold plasma jet for sterilization”, IJPR. 13 (2014) 363.
20. Trek www.treking.com / products / H-V Amp.asp.
21. W C Zhu, Q Li, X M Zhu, and Y. K Pu, Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium. Journal of Physics D: Applied Physics, 42 (20), (2009) 202002.
22. N Mericam-Bourdet, M Laroussi, A Begum, and E Karakas, Experimental investigations of plasma bullets. Journal of Physics D: Applied Physics, 42(5), (2009) 055207.
23. S Norberg, “Modeling Atmospheric Pressure Plasma Jets: Plasma Dynamics, Interaction With Dielectric Surfaces, Liquid Layers and Cells”, (Doctoral dissertation, University of Michigan) (2015).
24. S A Norberg, E Johnsen, and M J Kushner, Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air, “Plasma Sources Science and Technology”, 24 (3), (2015) 035026.
25. A H Colagar‚ H Memariani, F Sohbatzadeh, and A V Omran, “Non thermal Atmospheric Argon Plasma Jet Effects on Escherichia coli Biomacromolecules”, Applied biochemistry and biotechnology, 171 (2013) 1617.
26. F Sohbatzadeh, S Mirzanejhad, M Ghasemi, and M Talebzadeh, “Characterization of a non-thermal plasma torch in streamer mode and its effect on polyvinyl chloride and silicone rubber surfaces”, Journal of Electrostatics. 71(5) (2013) 875.
27. F Sohbatzadeh, A Hosseinzadeh, S Mirzanejhad and S Mahmodi, E coil, P aeruginosa, and B cereus, Bacteria Sterilization Using Afterglow of Non-Thermal Plasma at Atmospheric Pressure Applied Biochemistry and Biotechnology, 160 (2010) 1978.