نویسندگان
1 باشگاه پژوهشگران جوان
2 دانشگاه آزاد
چکیده
سلولهای خورشیدی هیبریدی مواد آلی/ معدنی با هدف تولید سلولهای خورشیدی آلی (OPV) کم هزینه و همچنین به دست آوردن مزایای دیگر، از جمله تنظیم طیف جذبی، با استفاده از اجزای معدنی، بیشتر مورد توجه میباشند. زیرا، سلولهای خورشیدی هیبریدی، پتانسیل لازم برای دستیابی به بازده تبدیل توان بالا (PCE) را دارند، اما بازده به دست آمده در حال حاضر کم میباشد. برای افزایش تبدیل توان از مواد معدنی به عنوان پذیرنده الکترون در سلولهای خورشیدی هیبریدی استفاده میشود، مخصوصاً ساختار الکترونیکی، در عملکرد دستگاه بسیار مهم میباشد.
بنابراین در این مقاله، نانومیله اکسید روی با استفاده از استاتروی دی هیدراته و پلیوینیلپیرولیدون (PVP < /span>) به عنوان ماده پیشساز و پایدارکننده، سنتز شد. پودر حاصله در معرض هوا، در 600 درجه سانتیگراد به مدت 1 ساعت کلسینه شد و با استفاده از طیفهای پراش پرتوی ایکس، TEM و SEM مورد بررسی قرار گرفت. همچنین، بعد از سنتز نانومیله اکسید روی و استفاده آن به عنوان بافر در سلولهای خورشیدی پلیمری معکوس، باعث شد عملکرد دستگاه بهبود یابد؛ متوسط کارایی دستگاه، از جمله ولتاژ مدار باز، چگالی جریان اتصال کوتاه، عامل پرشدگی، و بازده تبدیل توانهای اندازهگیری شده برای این سلول به ترتیب برابر با 60/0 ولت، 70/8 میلی آمپر برسانتیمترمربع، 58/0 و 01/3% میباشد. نتایج نشان میدهد که ساختار نانومیله اکسید روی به طور مؤثری به عنوان انتقال دهنده الکترون برای سلولهای خورشیدی پلیمری معکوس، به کار گرفته شود
کلیدواژهها
عنوان مقاله [English]
Improving the current density Jsc and efficiency enhancement of polymer solar cells P3HT:PCBM via nanorods ZnO
نویسندگان [English]
- lida ahmadkhani 1
- robabeh abbasi 2
1
2
چکیده [English]
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. The design of the inorganic material used as the electron acceptor in hybrid solar cells, particularly the electronic structure, is crucial to the performance of the device. Hence, this paper, nanorods ZnO have been synthesized by using zinc acetate dihydrate and polyvinylpyrrolidone (PVP) as starting materials. The calcined powders in air at 600 oC for 1 hour have been characterized by XRD, TEM and SEM. So, with nanorods ZnO as electrode in inverted polymer solar cells,the average performance of devices with open circuit voltage ,short circuit current density, fill factor,and power conversion efficiency are measured are measured as 0.61V, 8.7 mA/cm2, 0.58 and 3.01%, respectively. The results indicate that the structure of ZnO nanorod can effectively serve as an electrode for inverted polymer solar cells.
کلیدواژهها [English]
- ZnO
- nanorod
- Sol-gel
- Polymer solar cell
- Photovoltaic Organic / Inorganic
2. Y Zhou, M Eck, and M Kruger, Energy Environ. Sci 3 (2010) 1851.
3. N C Greenham, in C Brabec, V Dyakonov, and U Scherf (Eds.), “Organic Photovoltaics; Materials Device Physics and Manufacturing Technologies”, Wiley-VCH, Weinheim (2008).
4. V Thangadurai and P Kopp, J. Power Sources 168 (2007) 2.
5. T Tuken, B Yazici, and M Erbil, Material Chemistry and Physics 99 (2006) 459.
6. M S White, D C Olson, S E Shaheen, N Ko pida kis, and D S Ginley, Applied Physics Letters 89 (2006) 143517.
7. F Zhang, X Xu, W Tang, J Zhang, Z Zhuo, J Wang, J Wang, Z Xu, and Y Wang, Solar Energy Materials and Solar Cells 95 (2011) 1785.
8. W Cai, X Gong, and Y Cao, J. Solar Energy Materials and Solar Cells 94 (2010) 114.
9. S K Hau, H L Yip, and A K Y Jen, Polymer Reviews 50 (2010) 474.
10. Y Sun, J H.Seo, C J Takacs, J Seifter, and A J Heeger, J. Advanced Materials 23 (2011) 1679.
11. J Nelson, Mater. Today 14, 10 (2011) 462.
12. Y W Heo, D P Norton, L C Tien, Y Kwon, B S Kang, F Ren, S J Pearton, and J R LaRoche, Materials Science and Engineering R: Reports 47 (2004) 1.
13. J W Kang, Y J Kang, S Jung, M Song, D G Kim, C SuKim, and S H Kim, Solar Energy Materials and Solar Cells 103 (2012) 76.
14. D C Lim, W H Shim, K D Kim, H O Seo, J H Lim, Y Jeong, Y D Kim, and K H Lee, Solar Energy Materials and Solar Cells 95 (2011) 3036.
15. J Huang, Z Yin, and Q Zheng, Energy & Environmental Science 4 (2011) 3861.
16. M A Ibrahem, H Y Wei, M H Tsai, K C Ho, J J Shyue, and C W Chu, Solar Energy Materials and Solar Cells 108 (2013) 156.
17. T Y Chu, S W Tsang, J Zhou, P G Verly, J Lu, S Beaupré, M Leclerc, and Y Tao, Solar Energy Materials and Solar Cells 96 (2012) 155.
18. F C Krebs, J Fyenbo, and M Jorgensen, J. Materials Chemistry 20 (2010) 89941.
19. R Søndergaard, M Helgesen, M Jørgensen, and F C Krebs, J. Advanced Energy Materials 1 (2011) 68.
20. F C Krebs, S A Gevorgyan, and J Alstrup, J. Materials Chemistry 19 (2009) 5442.
21. F C Krebs, T D Nielsen, J Fyenbo, M Wadstrom, and M S Pedersen, Energy & Environmental Science 3 (2010) 512.
22. R R Søndergaard, M Hösel, and F C Krebs, J. Polymer Science Part B: Polymer Physics 51 (2013) 16.
23. R Thitima, C Patcharee, S Takashi, and Y Susumu, Solid- State Electronics 53 (2009) 176.
24. Y Hames, Z Alpaslan, A Kösemen, S E San, and Y Yerli, J. Solar Energy 84 (2010) 426.
25. M Wang, Y Li, H Huang, E D Peterson, W Nie, W Zhou, W Zeng, W uang, G Fang, N Sun, X Zhao, and D L Carroll, J. Applied Physics Letters 98 (2011) 103305.
26. Z Hu, J Zhang, Y Liu, Z Hao, X Zhang, and Y Zhao, Solar Energy Materials and Solar Cells 95 (2011) 2126.
27. K Takanezawa, K Tajima, and K Hashimoto, J. Applied Physics Letters 93 (2008) 63308.
28. C Y Chou, J S Huang, C H Wu, C Y Lee, and C F Lin, Solar Energy Materials and Solar Cells 93 (2009) 1608.
29. J S Huang, C Y Chou, and C F Lin, Solar Energy Materials and Solar Cells 94 (2010) 182.
30. J Ajuria, I Etxebarria, E Azaceta, R Tena-Zaera, N Fernandez-Montcada, E Palomares, and R Pacios J. Physical Chemistry Chemical Physics 13 (2011) 20871.
31. Y M Sung, F C Hsu, C T Chen, W F Su, and Y F Chen, Solar Energy Materials and Solar Cells 98 (2012) 103