نویسندگان
وزارت علوم، تحقیقات و فن آوری
چکیده
در چارچوب نظریه تابعی چگالی نسبیتی و با استفاده از روش پتانسیل کامل و پایههای جایگزیده در طرح ساختار نواری که در کد محاسباتی FPLO طراحی شده است، خواص مغناطیسی تکاتمهای فلزات واسط 3d (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) افزوده شده در سطح نیترید بور ششگوشی دوبعدی بررسی شدهاند. در این مطالعه انرژی پیوندی بین این اتمها و زیر سطح، مغناطش اسپینی، مغناطش مداری، و انرژی برهمکنش ناشی از جفتشدگی اسپین- مدار برآورد شدهاند. همچنین نتایج مغناطش مداری و انرژی جفتشدگی اسپین- مدار نشان میدهند که برخی از ساختارهای فلزات واسط افروده شده در سطح نیترید بور دارای مغناطش مداری و انرژی برهمکنش ناشی از جفتشدگی اسپین- مدار بزرگی بوده و احتمالاً میتوانند دارای مقادیر بزرگ انرژی ناهمسانگردی مغناطیسی باشند.
کلیدواژهها
عنوان مقاله [English]
Magnetic properties of single 3d-transition metals added on 2D hexagonal Boron Nitride
نویسندگان [English]
- Mahdi Afshar
- Hosein Doosti
چکیده [English]
In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magnetic moments per supercell, orbital magnetic moments and spin orbit coupling energies are calculated. In this study, three different magnetic relativistic methods the so-called scalar relativistic (SR), full relativistic (FR) and full relativistic plus an orbital polarization correction (OPC) are used. Results of nonmagnetic binding energies in the nonmagnetic SR method indicate that with the exception of Sc other 3d-TM adatoms can bind to BN surface. While, the results of magnetic binding energies in the spin-polarized SR approach show that Sc, Cr and Mn cannot bind on the surface of 2D h-BN. In addition, there is shown that the behavior of spin magnetic moments of 3d-TM adatoms are depended on their geometric positions due to their different crystal fields. Moreover, it is shown that Co in the top of N atoms and Fe adatoms in the top of B atoms with 1.23 (1.92) and 0.89 (1.72 ) have a large orbital magnetic moments in the FR(OPC) approaches due to their massive spin-orbit coupling effects, respectively. These so large values of orbital magnetic moments are promising the existence of large magnetic anisotropy energies.
کلیدواژهها [English]
- DFT
- 2D h-BN
- 3d transition metal
- spin magnetic moment
- orbital magnetic moment
- spin-orbit cupling
2. K Pi, K M McCreary, W Bao, W Han, Y F Chiang, Y Li, S W Tsai, C N Lau, and R K Kawakami, Phys. Rev. B 80 (2009) 075406.
3. J Shen, Y Hu, M Shi, N Li, H Ma, and M Ye, J. Phys. Chem. C 114 (2010) 1498.
4. M Bystrzejewski, S Cudzilo, A Huczko, H Lange, G Soucy, G Cota- Sanchez, and W Kaszuwara, Biomol. Eng. 24 (2007) 555.
5. H Ago, Y Ito, N Mizuta, K Yoshida, B Hu, C M Orofeo, M Tsuji, K I Ikeda, and S Mizuno, American Chemical Society Nano. 4 (2010) 7407.
6. K T Chan, J B Neaton, and M L Cohen, Phys. Rev. B 77 (2008) 235430.
7. Y Mao, J Yuan and J Zhong, J. Phys.: Condens. Matter 20 (2008) 115209.
8. H Johll, H C Kang, and E S Tok, Phys. Rev. B vol. 79 (2009) 245416.
9. C Cao, M Wu, J Jiang, and H P Cheng, Phys. Rev. B 81 (2010) 205424.
10. A N Rudenko, F J Keil, M I Katsnelson, and A I Lichtenstein, Phys. Rev. B 86 (2012) 075422.
11. H C Kandpal, K Koepernik, and M Richter, Phys. Rev. B 86 (2012) 235430.
12. M Sargolzaei and F Gudarzi, J. Appl. Phys. 110 (2011) 064303.
13. M Afshar and H Doosti, Modern Physics Letters B 29 (2015) 1450262.
14. B Fazeli and F Fazileh, Iranian Journal of Physics Research. 11, 4 (2012) 58.
15. C Li, Y Bando, C Zhi, Y Huang, and D Golberg, Nanotechnology 20 (2009) 385707.
16. D Golberg, Y Bando, Y Huang, T Terao, M Mitome, C Tang, and C Zhi, American Chemical Society Nano. 4 (2010) 2979.
17. L Lindsay and A D Broido, Phys Rev B 84 (2011) 155421.
18. A Pakdel, C Zhi, Y Bando, T Nakayama and D Golberg, American Chemical Society Nano. 5 (2011) 6507.
19. A Du, et al., J. Am. Chem. Soc. 131 (2009) 17354.
20. C Jin, F Lin, K Suenaga, and S Iijima, Phys. Rev. Lett. 102 (2009) 195505.
21. L C Yin, H M Cheng, and R Saito, Phys. Rev. B 81 (2010) 153407.
22. D Ma, Zh Lu, W Ju, and Y Tang, J. Phys. Condens. Matter 24 (2012) 145501.
23. J Li, M L Hu, Zh Yu, J X Zhong, and L Z Sun, Chem. Phys. Letter 532 (2012) 40.
24. D Sen, R Thapa, K Bhattacharjee, and K K Chattopadhyay, Computational Materials Science 51 (2012) 165.
1. Noncollinear
25. Y G. Zhou, J Xiao-Dong, Z G Wang, H Y Xiao, F Gao, and X T Zu, Phys. Chem. Chem. Phys, 12 (2010) 7588.
26. P Hohenberg, and W Kohn, Phys. Rev. 136 (1964) B864.
27. A K Rajagopal and J Callawy, Phys. Rev. B 7 (1973) 1912.
28. A K Rajagopal, J. Phys. C 11 (1978) 943.
29. K Koepernik and H Eschrig, Phys. Rev. B 59 (1999) 1743.
30. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
31. M S S Brooks, Physica B 130 (1985) 6.
Eriksson, B Johansson, and M S S Brooks, J. Phys. Cond. Mat. 1 (1989) 4005.