نویسندگان

گروه فیزیک، دانشگاه اصفهان

چکیده

در این مقاله پارامترهای میدان‌ بلوری (CFPs) در چارچوب نظریه تابعی چگالی با استفاده از یک روش نظری نوین پیشنهاد شده توسط پاول نواک و همکاران و استخراج توابع وانیر از توابع موج بلاخ برای ترکیب 3CeCl محاسبه شده‌اند. سپس، پارامترهای محاسبه شده در یک هامیلتونی شبه- اتمی شامل میدان بلوری، همبستگی f‌4 – f‌4 و جفت‌شدگی اسپین مدار، جایگذاری شده و با حل این هامیلتونی مؤثر ترازهای انرژی شکافته شده توسط میدان بلوری برای این ترکیب به دست آمده‌اند. به منظور بهبود نتایج از یک پارامتر هیبریدشدگی، Δ، استفاده شده است. نتایج حاصل با نتایج تجربی در توافق می‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Crystal field and Ce3+ ion energy levels of CeCl3 compound

نویسندگان [English]

  • L Mollabashi
  • E Sadeghi Kelishadi
  • S Jalali-Asadabadi

چکیده [English]

In this paper, the crystal field parameters (CFPs) have been calculated in the framework of the density functional theory using a novel theoretical approach proposed by Pavel Novák et al. and extracting the WANNIER functions from the Bloch eigenstates for the CeCl3 compound. Then, the calculated CFPs  have been used in an effective atomic-like Hamiltonian, including the crystal field, 4f-4f correlation and spin-orbit coupling, and the splitted energy levels of Ce3+ ion by crystal field have been derived by diagonalization of the Hamiltonian. A hybridization parameter, , has been used to improve the results. The results are found to be in agreement with the experimental data

کلیدواژه‌ها [English]

  • Crystal Field Parameters
  • density functional theory
  • wannier functions
  • strongly correlated systems
  • Effective Hamiltonian
1. G Liu, “Spectroscopic Properties of Rare Earths in Optical Materials”, Springer Series in Materials Sciences and Tsinghua University Press, Beijing, (2005).
2. P Novák, “Rare Earth: New Research”, ed. Zhaosen Liu, Nova Science Publishers, Inc., New York (2013).
3. X Cao and M Dolg, Molecular Physics 101 (2003) 2427.
4. U Cosentino, A Villa, D Pitea, G Moro, V Barone, and A Maiocchi, Journal of the American Chemical Society 124 (2002) 4901.
5. E Khorasani, N Deylinazar, M Alaei, and F Shahbazi, Iranian Journal of Physics Research, 14, 1 (2014) 33.
6. M Ilkhani, M R Abolhasani, and S Jalali Asadabadi, Iranian Journal of Physics Research, 8, 2 (2008) 99.
7. M M Ellis, and D J Newman, Journal of Chemical Physics 47 (1967) 1986.
8. M T Hutchings and D K Ray, Proceedings of the Physical Society 81 (1963) 663.
9. A K Raychaudhuri, and D K Ray, Proceedings of the Physical Society 90 (1967) 839.
10. S S Bishton and D J Newman, Journal of Physics and Chemistry of Solids 29 (1968) 1245.
11. P Novák, K Knížek, and J Kuneš, Physical Review B 87 (2013) 205139.
12. M Tinkham, “Group Theory and Quantum Mechanics”, Courier Corporation (2003).
13. S Hufner and B R Judd, Physics Today 32 (1979) 76.
14. W T Carnall, G L Goodman, K Rajnak, and R S Rana, The Journal of Chemical Physics 90 (1989) 3443.
15. B G Wybourne, “Spectroscopic Properties of Rare Earths”, Interscience, New York (1965).
16. B R Judd, Physical Review 141 (1966) 4.
17. T Schleid, G Meyer, and L R Morss, Journal of the Less Common Metals 132 (1987) 69.
18. P Blaha, K Schwarz, G K H Madsen, and D Kvasnicka, J Luitz, “WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties revised edition WIEN2k 17.1”, University of Technology Institute of Materials Chemistry Getreidemarkt, Austria (2017).
19. A A Mostofi, J R Yates, Y S Lee, I Souza, D Vanderbilt, and N Marzari, Computer Physics Communications 178 (2008) 685.
20. S Edvardsson, and D Aberg, Computer Physics Communications 133 (2001) 396.
21. C Li, B Wang, R Wang, and H Wang, Solid State Communications 144 (2007) 220.
22. K H. Park, and S J Oh, Physical Review B 48 (1993) 14833.
23. K. H Hellwege, E Orlich, and G Schaack, Physik der kondensierten Materie 4 (1965) 196.
24. D M S Bagguley, and G Vella-Coleiro, Journal of Physics C: Solid State Physics 2 (1969) 231.
25. B R Judd, “Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences”, An Analysis of the Absorption Spectrum of Praseodymium Chloride, The Royal Society (1957) 414.
26. K A Gschneidner, L Eyring, and G H Lander, “Handbook on the Physics and Chemistry of Rare Earths”, Elsevier (2002).
27. P Novák, J Kuneš, and K Knížek, Optical Materials 37 (2014) 414.

تحت نظارت وف ایرانی