نویسندگان

گروه فیزیک، دانشگاه قم، قم

چکیده

در این مقاله خواص اپتیکی نانوساختارهای هرمی شکل نقره با استفاده از تقریب دوقطبی مجزا در محیط آب مورد بررسی قرار گرفت. سطح مقطع‌های جذب، پراکندگی و خاموشی این دسته از نانوساختارها بر حسب تغییرات طول موج نور فرودی در ناحیه مرئی و فروسرخ نزدیک محاسبه شد. همچنین تغییرات ارتفاع، طول موج و پهنای نواری قله‌های سطح مقطع خاموشی (ناشی از تشدید پلاسمونی) بر حسب اندازه نانوذرات و ثابت دی الکتریک محیط مورد بررسی قرار گرفت. نتایج نشان می‌دهد که تنها دو قله مد دو قطبی و چهار قطبی در این طیف وجود دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of Optical Properties of Ag Pyramid Nanostructures by Discrete Dipole Approximation Method

نویسندگان [English]

  • S Ranjbar
  • A Azarian

چکیده [English]

In this paper, we investigate optical properties of silver pyramid nanostructures (SPNs) by means of discrete dipole approximation (DDA), when these nanoparticles are embedded into the water. Absorption, scattering and extinction cross-sections of the SPNs were calculated by change of incident wavelength in visible and near infra-red region. Moreover, height, wavelength and full width at half maximum (FWHM) of extinction cross-section peaks (due to plasmon resonances) were studied by change of nanostructure's size and dielectric constant of medium. Our results show that, there are only two peaks of dipole and quadruple modes in this spectrum.

کلیدواژه‌ها [English]

  • Ag pyramid nanostructures
  • Discrete Dipole Approximation
  • plasmon
  • Cross-sections
[1] O.V.Salata, “Applications of nanoparticles in biology and medicine,” J. Nanobiotechnology, (2004) vol. 2, no. 1, p. 3.
[2] C.J. Murphy, A.M.Gole, J.W.Stone, P.N.Sisco, A.M.Alkilany, E.C.Goldsmith, and S.C.Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res., (2008)vol. 41, no. 12, pp. 1721–1730.
[3] M.Homberger and U.Simon, “On the application potential of gold nanoparticles in nanoelectronics and biomedicine,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., (2010) vol. 368, no. 1915, pp. 1405–1453.
[4] J.Conde, J.Rosa, J.C.Lima, and P.V.Baptista, “Nanophotonics for molecular diagnostics and therapy applications,” Int. J. Photoenergy, (2011) vol. 2012.
[5] M.C.Daniel and D.Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., (2004) vol. 104, no. 1, pp. 293–346.
[6] M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J.Quant. Spectrosc. Radiat. Transf., (2007) vol. 106, no. 1, pp. 558–589.
[7] M.A.Yurkin and A.G.Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf., (2011) vol. 112, no. 13, pp. 2234–2247.
[8] P.J.Flatau and B.T.Draine, “Discrete-dipole approximation for scattering calculations,” J.Opt Soc Am, (1994) vol. 11, p. 1491.
[9] B.T.Draine, P.J.Flatau, User Guide for the discrete dipole approximation code DDSCAT 7.2. (2012) <http://www.arxiv.org/abs/1202.3424>.
[10] V.L.Loke, M.P.Mengüc, and T.A.Nieminen, “Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf., (2011) vol. 112, no. 11, pp. 1711–1725.
[11] R.Schmehl, B.M.Nebeker, and E.D.Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” Josa, (1997) vol. 14, no. 11, pp. 3026–3036.
[12] I.Ayrancı, R.Vaillon, and N.Selcuk, “Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles,” J. Quant. Spectrosc. Radiat. Transf., vol. 103, (2007) no. 1, pp. 83–101.
[13] A.L.González and C.Noguez, “Influence of morphology on the optical properties of metal nanoparticles,” J. Comput. Theor. Nanosci., (2007) vol. 4, no. 2, pp. 231–238.
[14] C.F.Bohren and D.R.Huffman, “Absorption and scattering by a sphere,” Absorpt. Scatt. Light Small Part., (1983) pp. 82–129.
[15] M.Quinten, Optical properties of nanoparticle systems: Mie and beyond. (2010) John Wiley & Sons.
[16] A.Moroz, “Depolarization field of spheroidal particles,” Josa B, (2009) vol. 26, no. 3, pp. 517–527.
[17] A.Wokaun, J.P.Gordon, and P.F.Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett., (1982) vol. 48, no. 14, p. 957.
[18] M.P.Marder, Condensed matter physics. (2010) Wiley.Com.
[19] C.Sönnichsen, T.Franzl, T.Wilk, G.Von Plessen, and J.Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys., (2002) vol. 4, no. 1, p. 93.
[20] M.Wahbeh. (2011). “Discrete-Dipole-Approximation (DDA) study of the plasmon resonance in single and coupled spherical silver nanoparticles in various configurations”.

تحت نظارت وف ایرانی