نویسندگان
دانشکده فیزیک، دانشگاه شهید بهشتی، تهران
چکیده
در این مقاله 5 نمونه از نانوذرات فریت نیکل روی مس (Ni0/8-xCUxZn0/2Fe2O4) با میزان آلایشهای مختلف 0/8، 0/6، 0/4، 0/2، 0x= به روش احتراق و با استفاده از سوخت گلایسین سنتز شد، سپس خواص ساختاری، مغناطیسی و اپتیکی این نمونهها مورد بررسی قرار گرفت. مشخصهیابی این نمونهها توسط دستگاههای XRD، FTIR، UV-Visible، SEMوVSM مورد بررسی قرار گرفت. دادههای حاصل از XRD وجود ساختار اسپینلی را برای کلیه نمونهها تأیید میکند. طیف FTIR وجود باند فلز اکسیژن M-O در جایگاههای هشتگانه وچهارگانه را نشان میدهد. تصاویر حاصل از SEMوجود ذرات شبهکروی را نشان داد. با استفاده از طیف سنج UV-Visibleمشاهده شد که با افزایش آلایش مس گاف انرژی نانوذرات فریت نیکل روی مس کاهش مییابد و نیز نتایج حاصل از VSMنانوذرات فریت نیکل روی مس نشان داد که با افزایش آلایش مس مغناطش اشباع کاهش مییابد.
کلیدواژهها
عنوان مقاله [English]
Study of physical properties of Ni-Cu-Zn ferrite nanoparticles by auto-combustion method
نویسندگان [English]
- M Houshiar
- A Abareshi
- S Porzamani
- L Jamilpanah
چکیده [English]
In this paper 5 different samples of Ni-Cu-Zn nanoparticles (Ni0.8-xCuxZn0.2Fe2O4) with different compositions of x=0.2,0.4,0.6,0.8 synthesized through auto-combustion method using glycine as fuel and then structural, magnetic and optical properties of this samples investigated. Characterization of these samples done using XRD, FTIR, UV-Visible, SEM and SEM. XRD data proves existence of spinel structure for all samples. FTIR spectrum shows the existence of oxygen-metal M-O bond at tetrahedral and octahedral bonds. SEM images showed the semispherical shape of particles. Using UV-Visible spectrum we measured by increasing the amount of Cu dopant the gap energy of Ni-Cu-Zn nano particles decreases and also results of VSM showed that saturation magnetization decreases by increasing amount of Cu dopant.
کلیدواژهها [English]
- Ni-Cu-Zn nanoparticles
- auto-combustion method
- spinel structure
- magnetic properties
[2]. A. Goldman, Handbook of Modern Ferromagnetic Materials, (Springer Science+Business Media, New York,1999)
[3]. J. Smith, and Wegn, Ferrites, John Wiley and Sons Pub., the Netherlands, (1959).
[4]. J. L. Snoek, New development in Ferromagnetic Materials Elsevier Pub. Co., New York, (1949)
[5]. L. Neel, Annales de physique (paris) 3, 137, (1948).
[6]. W. C. Hsu, S. C. Chena, P. C. Kuo, C. T. Lie, and W. S. Tsai, Mat. Sci. Engg.B 111,142 (2004)
[7]. i. Z. Rahman, and T. T. Ahmed, J. Mag. Magn.1576, 290, (2005).
[8]. S. Modak, M. Ammar, F. Mazaleyrat, S. Das, and P. K. Chakrabarti, j. All. Compd. 473(1-2), 15 (2009).
[9]. S. Zahi, M. Hashim, and A. R. Daud, J. Magn. Magn. Mater. 308, 177 (2007).
[10]. L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, J. Am. Ceram. Soc. 90(7), 2104 (2007).
[11]. S. K. Sharma, R. Kumar, S. Kumar, M. Knobel, C. T. Meneses, V. V. Siva Kumar, V. R. Reddy , M. Singh, and C. G. Lee, J. Phys.: Condens. Matter. 20, 235214 (2008).
12]. M. A. Hakim, D. K. Saha, and A. K. M. F. Kibria, Bang. J. Phys. 3, 57 (2007).
[13]. A. Bhaskar, B. R. Kanth, and S. R. Murthy, J. Magn. Magn. Mater. 283, 109 (2004).
[14]. Z. Yue, J. Zhou, L. Li, and Z. Gui, J. Magn. Magn. Mater. 233, 224 (2001).
[15]. Q. Xing, Z. Peng, C. Wang, Z. Fu, and X. Fu, Physica B 407, 388 (2012).
[16]. M. F. Huq, D. K. Saha2, R. Ahmed3, and Z. H. Mahmood, J. Sci. Res. 5 (2), 215-233 (2013) 229
[17]. J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, A. Mitra, S. R. Sainkar, P. S. AnilKumar, and S. K. Date, Mat. Chem. Phys. 59, 1 (1999).
[18]. Ra l Valenzuela, Hand book of The Temperature Behavior of Resonant and Non-resonant Microwave Absorption in Ni-Zn Ferrites, Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, México,2011)
[19]. Vikas J. Pissurlekar, International Journal of Science and Research (IJSR) , 5 (2), 2319-7064 (2016)
[20]- N.M. Deraz, A. Alarifi. Journal of Analytical and Applied Pyrolysis 94 (2022) 42–47.
[21]- D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publish. Co., England (1967) ) 42
[22]- N.M.Deraz,A.Alarifi,Polyhedron28(2009)4222.
[23]- N.M.Deraz, A.Alarifi. Journal of Analytical and Applied Pyrolysis 94 (2022) 42–47.