نویسندگان

1 گروه فیزیک، دانشگاه پیام نور، تهران

2 پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، تهران

چکیده

پراکندگی 15N با انرژی MeV 23 Elab= به هدف CH2( Au) مطالعه شد. پراکندگی کشسان15N  در بازه زاویه ­ای °19-°7 با استفاده از آشکارساز نواری سیلیسیوم LEDA اندازه­ گیری شد.  با استفاده از داده‌های برهم کنش ثبت شده، تصحیح انحراف باریکه ذرات، تعداد یون برخوردی به نمونه و سطح مقطع دیفرانسیلی پراکندگی کشسان 12C(15N, 15N)12C  در بازه زاویه ­ای °19-°7 تعیین شد. همچنین با استفاده از مدل اپتیکی و با استفاده از نرم‌افزار Fresco سطح مقطع پراکندگی برای بازه زاویه‌ای ° 0 تا °60در چارچوب آزمایشگاه بامقادیر پارامترهای تعمیم یافته  اپتیکی بدست آمد و با داده‌های تجربی مقایسه شد سطح مقطع نظری حاصل از پتانسیل اپتیکی و داده های تجربی حاصل از این کار پژوهشی تفاوت معناداری را در زاویه‌های تحت پوشش نشان می‌دهند.

کلیدواژه‌ها

عنوان مقاله [English]

Elastic scattering of 15N ions by 12C at 23 MeV

نویسندگان [English]

  • H Nanakar 1
  • O Kakuee 2

چکیده [English]

Scattering of 15N ions with the energy of Elab = 23 MeV on the CH2(Au) target is investigated.  Elastic scattering of these ions in the angular range of 7°-19° was measured by employing the silicon strip detector, “LEDA”. Using the measured scattering data, deviation of ion beam, number of incident ions on the target and differential cross sections of the 12C(15N, 15N)12C elastic scattering in the angular range of 7°-19° were determined.  Moreover, by applying the optical model and using the Fresco software, the scattering cross sections in the angular range of 0°-60° in the laboratory framework were obtained by entering the extrapolated optical parameters.  The obtained cross section data were then compared with the experimental ones.  The theoretical cross section data resulting from the optical potential exhibit meaningful difference with the experimental data obtained in this research work in the covered angular range.  

کلیدواژه‌ها [English]

  • elastic scattering
  • nucleus-nucleus collision
  • 15N ion beam
  • 12C target
  • Optical Model
  • LEDA Detector

1. M E Farid et al., Life Sci. J. 11 (2014) 208. 2. P E Hodgson, “Growth Points in Nuclear Physics”, Pergamon Press, Oxford (1980). 3. J C Blackman, Phys. Rev. C 72 (2005) 34606. 4. W Norenberg, “Basic Concept in the Description of Collisions Between Heavy Nuclei, in Heavy Ion Collisions”, ed. R Bock, North-Holland Publishing Company, Amsterdam (1980). 5. G R Satchler, “Introduction to Nuclear Reactions”, Mc Millan Press Ltd, London (1980). 6. A Aydın, “40Ar(p,p)40Ar Esnek Saçılmasının 22.6, 27.5, 30.0 ve 36.7MeV Proton Enerjilerinde Optiksel Model Analizi”, PhD Thesis, Ondokuz Mayıs Niversitesi, Fen Bilimleri Enstitüsü, Samsun (1997). 7. G R Satchler, “Direct Nuclear Reactions”, Oxford University Press, New York (1983). 8. M E Brandan and G R Satchler, Phys. Reports 285 (1997) 143. 9. I Boztosun, “Coupled-Channels Calculations for the Scattering of Deformed Light Heavy-Ions: A Challenge to the Standard Approach”, PhD thesis, Oxford University, UK (2000) 65. 10. Y Kondo, Y Sugiyama, Y Tomita, Y Yamamuchi, H Ikeoze, K Idenio, S Hamada, T Sugimutsu, M Hijiya, and H Fujita, Phys. Lett. B 365 (1996) 17. 11. M P Nicoli, F Freeman, R M Aissaou, N Beck, E Elanigue, A Noucier, R Morsad, A Szilner, S Basrak, M E Brandan, Nucl. Phys. A 654 (1999) 882. 12. D T Khoa, W von Ortezen, H G Bohlen, and F Nuoffer, Nucl. Phys. A 672 (2000) 387. 13. Y Kondo, B A Robson, and R Smith, Phys. Lett. B 227 (1989) 310. 14. Y Kondo, F Michel and G Reidemeister, Phys. Lett. B 242 (1990) 340. 15. M M Gonzalez and M E Brandan, Nucl. Phys. A 693 (2001) 603615. 16. M E Kürkçüoğlu and H Aytekin, Ind. J. of Phys. 80 (2006) 641. 17. M E Kürkçüoğlu, “16O+16O Esnek Saçılmasının Fenomenolojik ve Mikroskobik Potansiyeller ile Optik Model Analizleri”, PhD Thesis, Onguldak Karaelmas University, Fen Bilimleri Enstitüsü, Zonguldak, (2006) 227. 18. J cook, Nucl. Phys. A 388 (1982) 153. 19. O R Kakuee et al., Iranian J. phys. Res. 4, 1 (2003) 23. 20. W Von Ortzen and H G Bohlen, Phys. Rep. 19, (1975) 1. 21. L Auditore et al., Heavy Ion Phys. 17 (2003) 41. 22. A T Rudchik et al., Nucl. Phys. A 947 (2016) 161. 23. A Gurbich, Nucl. Instr. And Meth. B 266 (2008) 1193. 24. T Yamaya et al., Phys. Lett. B 417 (1998) 7. 25. A T Rudchik et al., Nucl. Phys. A 941 (2015) 167. 26. W Henning et al., Phys. Rev. C 15 (1977) 292. 27. S Bashkin et al., Phys. Rev. 114 (1959) 1543. 28. G Dearnaley et al., Phys. Lett. 1 (1962) 269. 29. M L Halbert, C E Hunting, and A Zucker, Phys. Rev. 117 (1960) 1545. 30. A T Rudchik, Nucl. Phys. A 958 (2017) 234. 31. T Davinson, Nucl. Instr. and Meth. In Phys. Research A 545 (2000) 350. 32. G F E Knoll, “Radiation Detection and Measurment”, Wiley (1979). 33. W R Leo, “Techniques for Nuclear and Particle Physics Experiments”, Springer-Verlag (1994). 35. K S Krane, “Introductory Nuclear Physics”, Wiley, New York (1988). 36. J Rahighi et al., Nucl. Instr. and Meth. In Phys. Research A 578 (2007) 185. 37. Y Kucuk and I Boztosun, Nucl. Phys. A 764 (2006) 160.

تحت نظارت وف بومی