نویسندگان
1 سازمان آموزش و پرورش استان فارس
2 گروه فیزیک، دانشکده علوم، دانشگاه یاسوج، یاسوج
چکیده
در این مقاله، نوع جدیدی از تشدیدهای چند فوتونی در یک سیستم کوانتومی شش ترازی قویاً تحریک شده که یکی از ترازهای آن به صورت انفرادی با دو تراز دارای شکاف انرژی ثابت E، جفت شده است را مطالعه میکنیم. در نزدیکی شرط تشدید چند فوتونی، رفتاری متفاوت از نظر کیفی برای تعداد فوتونهای صحیح زوج یا فرد پیدا میشود که چنین پدیدهای، بر حسب دو مسیر تداخلی معین و با محاسبه فاز تداخل سیستم توجیه میشود. در رژیم وافازی قوی آهنگهای گذار بین ترازی را محاسبه کرده و نشان میدهیم که تداخلهای چندترازی لاندائو- زنر (LZ) بین فرایندهای مرتبه اول و مرتبه سوم، منجر به تشدیدهایی با خصوصیات کاملاً متفاوت از تشدیدهای دوترازی شده که اولین بار در مرتبه چهارم جفتشدگی ترازهای انرژی به وجود میآیند. آهنگها برای تعداد فوتونهای صحیح، ویژگیهای تشدیدداری را نشان میدهند. سرانجام آشکارا مدلمان را به آزمایشها ربط داده و نشان میدهیم که همه ویژگیهای مربوط به دادههای تجربی را در بر میگیرد. این تحقیق با انواع مختلفی از سیستمهای حالت جامد و اتمی یا مولکولی مربوط است که به طور خاص راهکاری واضح را برای توضیح آزمایشهای مبهم در نقاط کوانتومی دوگانه قویاً تحریک شده ارائه میکند.
کلیدواژهها
عنوان مقاله [English]
Investigation of multilevel interference resonances via transition rates in strongly driven six-level systems
نویسندگان [English]
- M Karami 1
- kh Karami 1
- P Zamani 2
- Gh Rezaei 2
1
2
چکیده [English]
In this paper, we study a new kind of multiphoton resonances in a strongly driven six-level quantum system, where one of its levels is coupled individually with the other two levels that have the constant energy separation E. Near the multiphoton resonance condition, a different behavior for the number of even or odd photons was found qualitatively, which could be explained by considering two certain interfering trajectories and computing the interference phase of system. In the regime of strong dephasing, we calculated the rates of interlevel transitions, showing that multilevel Landau-Zener (LZ) interferences between first and third order processes could lead to resonances with characteristics differing markedly from those of familiar two-level resonances that first arose at the fourth order in the couplings of the energy levels. The rates displayed resonant features at the number of integer photons. Finally, we could explicitly connect our model to the experiments, showing that it captured all relevant features of the experimental data. This paper can be relevant for a variety of solid state and atomic or molecular systems. In particular, it provides a clear mechanism to explain the puzzling experimental observations in strongly driven double quantum dots.
کلیدواژهها [English]
- double quantum dot
- interference phase
- strong dephasing regime
- transition rate
- multilevel interference resonances
2. W D Oliver, Y Yu, J C Lee, K K Berggren, L S Levitov, and T P Orlando, Science 310 (2005) 1653.
3. J E Mooij, Science 307 (2005) 1210.
4. Y Makhlin, G Scho¨n, and A Shnirman, Rev. Mod. Phys. 73 (2001) 357.
5. J R Friedman, V Patel, W Chen, S K Tolpygo, and J E Lukens, Nature 406 (2000) 43.
6. Y Nakamura, Y A Pashkin, and J S Tsai, Phys. Rev. Lett. 87 (2001) 246601.
7. Y Yu, S Han, X Chu, S I Chu, and Z Wang, Science 296 (2002) 889.
8. J M Martinis, S Nam, J Aumentado, and C Urbina, Phys. Rev. Lett. 89 (2002) 117901.
9. I Chiorescu, Y Nakamura, C J P M Harmans, and J E Mooij, Science 299 (2003) 1869.
10. S Ashhab, J R Johansson, A M Zagoskin, and F Nori, Phys. Rev. A 75 (2007) 063414 .
11. S N Shevchenko, S Ashhab, and F Nori, Phys. Rep. 492 (2010) 1.
12. H Ribeiro, J R Petta, and G Burkard, Phys. Rev. B 87 (2013) 235318 .
13. J Stehlik, Y Dovzhenko, J R Petta, J R Johansson, F Nori, H Lu, and A C Gossard, Phys. Rev. B 86 (2012) 121303 .
14. M O Scully and M S Zubairy, “Quantum Optics”, Cambridge University Press, Cambridge, England, (1997).
15. G Sun, X Wen, B Mao, J Chen, Y Yu, P Wu, and S Han, Nat. Commun. 1 (2010) 51.
16. D M Berns, M S Rudner, S O Valenzuela, K K Berggren, W D Oliver, L S Levitov, and T P Orlando, Nature (London) 455 (2008) 51 .
17. G Sun, X Wen, Y Wang, S Cong, J Chen, L Kang, W Xu, Y Yu, S Han, and P Wu, Appl. Phys. Lett. 94 (2009) 102502.
18. S E de Graaf, J J Leppakangas, A Adamyan, A V Danilov, T Lindstrom, M Fogelstrom, T Bauch, G Johansson, and S E Kubatkin, Phys. Rev. Lett. 111 (2013) 137002 .
19. J I Colless, X G Croot, T M Stace, A C Doherty, S D Barrett, H Lu, A C Gossard, and D J Reilly, Nat. Commun. 5 (2014) 3716.
20. S O Valenzuela, W D Oliver, D M Berns, K K Berggren, L S Levitov, and T P Orlando, Science 314 (2006) 1589.
21. P A Franken, A E Hill, C W. Peters, and G Weinreich, Phys. Rev. Lett. 7 (1961) 118.
22. I D Abella, Phys. Rev. Lett. 9 (1962) 453.
23. W Kaiser and C G B Garrett, Phys. Rev. Lett. 7 (1961) 229.
24. S Nadj-Perge, V S Pribiag, J W G van den Berg, K Zuo, S R Plissard, E P A M Bakkers, S M Frolov, and L P Kouwenhoven, Phys. Rev. Lett. 108 (2012) 166801.
25. E A Laird, C Barthel, E I Rashba, C M Marcus, M P Hanson, and A C Gossard, Semicond. Sci. Technol. 24 (2009) 064004.
26. B D Cohen-Tannoudji, C and F Lalo¨e, “Quantum Mechanics Volume One”, Wiley, New York, (1977).
27. J Stehlik, M D Schroer, M Z Maialle, M H Degani, and J R Petta, Phys. Rev. Lett. 112 (2014) 227601.
28. S Nadj-Perge, S M Frolov, E P A M Bakkers, and L P Kouwenhoven, Nature (London) 468 (2010) 1084.
29. V N Golovach, M Borhani, and D Loss, Phys. Rev. B 74 (2006) 165319.
30. C Flindt, A S Sørensen, and K Flensberg, Phys. Rev. Lett. 97 (2006) 240501.
31. A V Shytov, D A Ivanov, and M V Feigel’man, Eur. Phys. J. B 36 (2003) 263.
32. E I Rashba, Phys. Rev. B 84 (2011) 241305.
33. G Széchenyi and A Pályi, Phys. Rev. B 89 (2014) 115409.
34. M P Nowak, B Szafran, and F M Peeters, Phys. Rev. B 86 (2012) 125428.
35. J Danon and M S Rudner, Phys. Rev. Lett. 113 (2014) 247002.
36. H Sambe, Phys. Rev. A 7 (1973) 2203.
37. S Kohler, J Lehmann, and P Hänggi, Phys. Rep. 406 (2005) 379.
38. X Wen and Y Yu, Phys. Rev. B 79 (2009) 094529; L Du and Y Yu, Phys. Rev. B 82 (2010) 144524.
39. L D Landau, Zur theorie der energie¨ubertragung. II, Phys. Z. Sowjet:union: 2 (1932) 46.
40. C Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London, Ser. A 137 (1932) 696.
41. E C G St¨uckelberg, Theorie der unelastischen St¨osse zwischen Atomen, Helv. Phys. Acta 5 (1932) 369.
42. E Majorana, Atomi orientati in campo magnetico variabile, Nuovo Cimento 9 (1932) 43.
43. K C Nowack, F H L Koppens, Y V Nazarov, and L M K Vandersypen, Science 318 (2007) 1430.
44. E A Laird, C Barthel, E I Rashba, C M Marcus, M P Hanson, and A C Gossard, Phys. Rev. Lett. 99 (2007) 246601.
45. S Nadj-Perge, S M Frolov, J W W van Tilburg, J Danon, Y V Nazarov, R Algra, E P A M Bakkers, and L P Kouwenhoven, Phys. Rev. B 81 (2010) 201305.