نویسنده
گروه فیزیک، دانشکده علوم، دانشگاه ایلام، ایلام
چکیده
نیمه عمر واپاشی یکی از مهمترین پارامترهای توصیف کنندۀ ساختار هسته در دینامیک هستهای است و مطالعات زیادی در طول سالیان در این زمینه انجام شده است. در این پژوهش به کمک روشهای نیمه تجربی ویولا- سیبورگ، رویر، پارخومنکو و سوبیزسکی، براون، رابطۀ جدید گایگر- نوتال، پونارو و همکاران و قانون جهانی واپاشی نیمه عمر واپاشی آلفازای زنجیرۀ ایزوتوپی توریم مورد بررسی قرار گرفته و نتایج حاصل با نتایج تجربی مقایسه شده است. از بین روشهای نیمه تجربی بهترین روش برای مطالعۀ زنجیرۀ ایزوتوپی توریم، روش ویولا- سیبورگ است
کلیدواژهها
عنوان مقاله [English]
The study of the half lives alpha decay of 90 208-239 Th using semi-empirical methods
نویسنده [English]
- M Seidi
چکیده [English]
Half lives alpha decay is the one of the most important parameters used for describing nuclear structure in nuclear dynamics; over the years, many studies have been done in this area. In this study, by using semi-empirical methods such as Viola-Seaborg (VSS), Royer, Parkhomenko and Sobiczewski (PSM), Brown, New Geiger-Nuttall (NGN), Poenaru et al. (UNIV) and Universal Decay Law (UDL), the half lives alpha decay of Thorium chain isotopes were considered and compared with the experimental data. The Viola-Seaborg method served as the best approach among the semi-empirical methods introduced above for studying Thorium chain isotopes
کلیدواژهها [English]
- thorium chain
- semi-empirical methods
- alpha decay
- Viola–Seaborg method
2. E Rutherford and H Geiger, Proc. R. Soc. 81 (1909) 141.
3. E Rutherford and T Royds, Philos. Mag. 17 (1908) 281.
4. H Geiger and J M Nutall, Philos. Mag. 22 (1911) 613.
5. G Gamow, Z. Phys. 51 (1928) 204.
6. C Gallagher and J Rasmussen, D Inorg,. Nuci. Chem. 3 (1957) 333.
7. V E Viola and G T Seaborg, J. Inorg. Nucl. Chem. 28 (1966) 741.
8. A Sobiczewski, Z Patyk, and S Cwiok, Phys. Lett. B 224 (1989) 1.
9. B A Brown, Phys. Rev. C 46 (1992) 811.
10. G Royer, J. Phys. G, Nucl. Part. Phys. 26 (2000) 1149.
11. A Parkhomenko and A Sobiczewski, Acta Phys. Pol. B 36 (2005) 3095.
12. D N Poenaru, I H Plonski, and W Greiner, Phys. Rev. C 74 (2006) 014312.
13. D Ni and Z Ren, Nucl. Phys. A 825 (2009) 145.
14. G Royer and H F Zhang, Phys. Rev. C 77 (2008) 037602.
15. J M Dong, H F Zhang, W Zuo, and J Q Li, Chin. Phys. Lett. 25 (2008) 4230.
16. J M Dong, H F Zhang, and G Royer, Phys. Rev. C 79 (2009) 054330.
17. J Dong, H Zhang, Y Wang,W Zuo, and J Li, Nucl. Phys. A 832 (2010) 198.
18. Y Ren and Z Ren, Phys. Rev. C 84 (2012) 044608.
19. K P Santhosh and B Priyanka, Nucl. Phys. A 929 (2014) 20.
20. K P Santhosh and B Priyanka, Nucl. Phys. A 940 (2015) 21.
21. K P Santhosh, B Priyanka, Phys. Rev. C 87 (2013) 064611.
22. K P Santhosh, I Sukumaran, and B Priyanka, Nucl. Phys. A 935 (2015) 28.
23. S S M Wong, "Introductory Nuclear Physics", John Wiley & Sons, Inc, (2004).
24. G Audi, O Bersillon, J Blachot, and A H Wapstra, Nucl. Phys. A 729 (2003) 3.
25. A H Wapstra, G Audi, and C Thibault, Nucl. Phys. A 729 (2003) 129.
26. A Rytz, At. Data Nucl. Data Tables 47 (1991) 205.
27. D Ni, Z Ren, T Dong, and C Xu, Phys. Rev. C 78 (2008) 044310.
28. B Buck, A C Merchant, and S M Perez, At. Data Nucl. Data Tables 54 (1993) 53.
29. P Mohr, Phys. Rev. C 73 (2006) 031301.
30. R G Thomas, Prog. Theor. Phys. 12 (1954) 253.
31. A M Lane and R G Thomas, Rev. Mod. Phys. 30 (1958) 257.
32. C Qi, F R Xu, R J Liotta and R Wyss, Phys. Rev. C 103 (2009) 072501.
33. National Nuclear Data Centre, NuDat2.5, http://www.nndc.bnl.gov.
34. S M Mostajabodda’vati, A Parvaresh, and E Hassanzadeh, Iranian Journal of Physics Research 4 2 (2004) 191.