نویسندگان

1 دانشکده فیزیک، دانشگاه گیلان، رشت

2 دانشکده علوم پایه، دانشگاه هوایی شهید ستاری، تهران

چکیده

در این پژوهش، در ابتدا با استفاده از محاسبات اصول اولیه و در چارچوب نظریه تابعی چگالی، ساختار الکترونی نانونوارهای دسته‌مبلی سیلیسینی به ازای پهناهای مختلف، مورد بررسی قرار می‌گیرد. نتایج حاصل از ساختار نواری نانونوارهای دسته‌مبلی، وجود یک گاف نواری مستقیم را نشان می‌دهد، که با افزایش پهنای نانونوار به صورت نوسانی کاهش می‌یابد. در توصیف دلایل اصلی مؤثر در نظم الکتریکی و مغناطیسی مواد و همچنین در شدت اثرات همبستگی الکترونی، برهم‌کنش کولنی مؤثر میان الکترون‌های موضعی، نقش اساسی را ایفا می‌کند. بدین منظور در ادامه پوشش‌دهی برهم‌کنش کولنی را با استفاده از محاسبات اصول اولیه و تقریب فاز تصادفی مقید (cRPA) در نانونوارهای دسته‌مبلی سیلیسینی بررسی نموده و مقادیر کمیت‌های برهم‌کنش کولنی مؤثر (U هابارد) را برای آنها مورد محاسبه قرار می‌دهیم. مقادیر این کمیت‌ها برای نانونوارهای دسته‌مبلی سیلیسینی، قابل توجه بوده و بیشتر از سیلیسین اولیه است، که دلالت بر شدت اثرات همبستگی الکترونی در آنها دارد. با توجه به شدت اثرات محدودیت کوانتومی متفاوت در این دسته از نانونوارها، مقادیر کمیت‌های برهم‌کنش کولنی مؤثر درون- جایگاهی، مشابه نتایج حاصل از ساختار نواری آنها بوده و با افزایش پهنای نانونوار به طور نوسانی کاهش می‌یابد. از طرفی به ازای اتم‌های موجود در لبه‌های نانونوار، کمیت‌های برهم‌کنش کولنی مؤثر درون- جایگاهی، مقادیر بیشتری را نسبت به اتم‌های درونی داشته، که نشان ‌دهنده پوشش‌دهی کمتر برهم‌کنش کولنی میان الکترون‌های موضعی، در لبه‌های نانونوار است. در پایان نتایج حاصل از بررسی کمیت‌های برهم‌کنش کولنی مؤثر برون جایگاهی، نشان می‌دهند که برهم‌کنش کولنی در فواصل کوتاه، به طور ضعیف پوشش داده شده و در فواصل دورتر در حدود 12 آنگستروم پوشش داده نمی‌شود، که با محاسبات اصول اولیه صورت گرفته در مورد دستگاه‌‌هایی با ابعاد پایین، مطابقت دارد. این پوشش‌دهی کم به طور خاص در فواصل دورتر، می‌تواند وجود تصحیحات شبه‌ذره ای قابل توجه در تقریب GW و انرژی پیوندی اکسیتونی بزرگ را در نانونوارهای دسته‌مبلی سیلیسینی توضیح دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of electron correlation effects in armchair silicene nanoribbons

نویسندگان [English]

  • F Bagherpour 1
  • B Abediravan 2

1

2

چکیده [English]

In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased  with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between localized electrons plays an important role in describing the reason underlying the electronic and magnetic ordering of the material, as well as the intensity of the correlation effects. Thus, we further investigate the screening of the Coulomb interaction in ASiNRs by employing ab initio calculations in conjunction with the constrained random-phase approximation (cRPA) and determine the values of  effective on-site Coulomb interaction (Hubbard U) for them. The values of  Hubbard U parameters for ASiNRs are significant and more than the ones in pristine silicene, indicating a strong correlation effect in these compounds. According to the intensity of different quantum confinement effects in these nanoribbons, the values of  on-site Coulomb interaction parameters, similar to the previous results, turn out to be small, which vary as a function of increasing the ribbon widths. Moreover, in the edge of nanoribbon, the effective Coulomb interaction patameters are greater than the inner parts, showing   the lower screening of  the Coulomb interaction between the localized electrons in the edge of nanoribbon. Finally, the results of the study of the off-site Coulomb interaction show that the Coulomb interaction is weakly screened at short distances, while at large distances if about 12 Å, it is unscreened, which is in a good agreement with the recent studies on the  low dimensional systems. This inefficient screening at large distances can explain the existence of a remarkable quasiparticles correction in GW approximation and exciton binding energy in ASiNRs.
 

کلیدواژه‌ها [English]

  • armchair silicene nanoribbons
  • cRPA
  • density functional theory
  • Hubbard U
  • electronic correlation
1. A K Geim and K S Novoselov, Nature Mater 6 (2007) 183.
2. S D Sarma et al., Special Issue of Solid State Commun. 143 (2007) 1.
3. G G Guzman-Verri and L L Y Voon, Phys. Rev. B 76 (2007) 075131.
4. B Lalmi et al., Applied Physics Letters 97 (2010).
5. P Vogt et al., Phys. Rev. Lett. 108 (2012) 155501.
6. Y Yamada-Takamura, and R Friedlein, Science and Technology of Advanced Materials 15 (2014) 064404.
7. A Fleurence et al., Phys. Rev. Lett. 108 (2012) 245501.
8. L Chen et al., Phys. Rev. Lett. 109 (2012) 056804.
9. B Feng et al., Nano Lett. 12 (2012) 3507.
10. L Meng et al., Nano Lett. 13 (2013) 685.
11. S Cahangirov et al., Phys. Rev. Lett. 102 (2009) 236804.
12. J Yan, Sh P Gao, R Stein, and G Coard, Phys. Rev. B 91 (2015) 245403.
13. N D Drummond, V Zolyomi, and V I Falko, Phys. Rev. B 85 (2012) 075423.
14. Z G Shao et al., J. Appl. Phys. 114 (2013) 093712.
15. H Li et al., Eur. Phys. J. B 85 (2012) 274.
16. C C Liu, W Feng, and Y Yao, Phys. Rev. Lett. 107 (2011) 076802.
17. P Padova et al., Nano Lett. 12, 11 (2012) 55005503.
18. G He, Phys. Rev. B 73 (2006) 035311.
19. M Ezawa and N Nagaosa, Phys. Rev. B 88 (2013) 121401.
20. S Cahangirov, M Topsakal, and S Ciraci. Phys. Rev. B 81 (2010) 195120.
21. S Cahangirov et al., Phys. Rev. Lett. 102 (2009) 236804.
22. Y Ding and J Ni, Appl. Phys. Lett. 95 (2009) 083115.
23. L Ma, J M Zhang, K W Xu, and V Ji, Physica B 425 (2013) 6671.
24. Q G Jiang et al., J. Mater. Chem. C (2015) 3954.
25. W Wei and T Jacob, Phys. Rev. B 88 (2013) 045203.
26. K F Mak, J Shan, and T F Heinz, Phys. Rev. Lett. 106 (2011) 046401.
27. W Wei and T Jacob, Phys. Rev. B 86 (2012) 165444.
28. W Wei and T Jacob, Phys. Rev. B 87 (2013) 085202.
29. P Cudazzo et al., Phys. Rev. Lett. 104 (2010) 226804.
30. M Bockstedte, A Marini, O Pankratov, and A Rubio, Phys. Rev. Lett. 105 (2010) 026401.
31. L Wirtz, A Marini, and A Rubio, Phys. Rev. Lett. 96 (2006) 126104.
32. D Prezzi et al., Phys. Rev. B 77 (2008) 041404.
33. L Yang, M L Cohen, and S G Louie, Phys. Rev. Lett. 101 (2008) 186401.
34. E Şaşıoğlu, C Friedrich, and S Blügel, Phys. Rev. B 83 (2011) 121101.
35. E Şaşıoğlu et al., Phys. Rev. B 95 (2017) 060408.
36. C Friedrich, A Schindlmayr, and S Blügel, Computer Physics Communicaons 180 (2009) 347.
37. C Friedrich, S Blügel, and A Schindlmayr, Phys. Rev. B 81 (2010) 125102.
38. E Şaşıoğlu et al., Phys. Rev. B 81 (2010) 054434.
39. S M Aghaei and I Calizoa, Journal of Applied Physics 118 (2015) 104304.
40. A A Mostofi et al., Comput. Phys. Commun. 178 (2008) 685.
41. F Freimuth et al., Phys. Rev. B 78 (2008) 035120.
42. P Miro, A Martha, and T Heine, Chem. Soc. Rev. 43 (2014) 6537.

تحت نظارت وف ایرانی