نویسندگان
دانشکده فیزیک، دانشگاه تبریز، تبریز
چکیده
تحقیقات نشان میدهد که اندازه نانوذرات مغناطیسی تأثیر مهمی روی ویژگیهای آنها میگذارد، به طوری که احتمال وجود یک اندازه بهینه در استفاده از آنها در کاربردهای پزشکی گزارش شده است. از اینرو در این تحقیق نانوذرات فریت کبالت به روش همرسوبی در دمای 80 درجه سلسیوس تهیه شده و سپس پودر حاصل در کوره و در دماهای 150، 200، 300، 400، 500 و 600 درجه سلسیوس قرار گرفت تا نانوذراتی با اندازههای مختلف حاصل شود. پراش پرتو X نمونهها، تشکیل فاز خالص اسپینلی را در مورد نانوذرات تأیید کرد و اندازه متوسط بلورکهای نمونهها توسط رابطه شرر 18/8، 04/9، 95/8، 55/9، 40/10 و 12/11 نانومتر به ترتیب برای نمونههای سنتز شده در دماهای 150 تا 600 درجه سلسیوس به دست آمد. اندازهگیری های ویژگیهای مغناطیسی گویای افزایش میدان وادارندگی و مغناطش اشباع با افزایش اندازه است. بازده گرمایی تعلیق نانوذرات تحت اعمال میدان مغناطیسی متناوب با بسامد kHz 92 اندازهگیری و منحنی افزایش دما بر حسب زمان به دست آمد. این آزمایشها نشان داد که بیشترین مقدار نرخ جذب ویژه برای نانوذرات با اندازه حدود nm 9 حاصل میشود و ذرات بزرگتر و یا کوچکتر از آن مقدار نرخ جذب کمتری به دست میدهد. نتایج این تحقیق مبین وجود یک اندازه بهینه برای کاربردهای گرمادرمانی مغناطیسی است که در آن بیشترین بازده گرمایی حاصل میشود.
کلیدواژهها
عنوان مقاله [English]
Study of the effect of particle size on the specific absorption rate of cobalt ferrite nanoparticles in a radio frequency magnetic field
نویسندگان [English]
- B Aslibeiki
- G Hassanzadeh
چکیده [English]
Studies show that the size of magnetic nanoparticles has an important impact on their properties. So, the possibility of an optimal size for their use in medical applications has been reported. Therefore, in this study, cobalt ferrite nanoparticles were prepared using co-precipitation method at 80°C; then the powder was annealed in a furnace at 150, 200, 300, 400, 500 and 600°C to obtain nanoparticles with different sizes. The X-ray diffraction patterns confirmed the formation of a pure spinel phase in the nanoparticles, and the average size of the crystalites of the samples was determined by Scherrer's formula to be 8.18, 9.04 , 8.95, 9.55, 10.40 and 11.12 nm for synthesized samples at 150 to 600°C, respectively. Measurements of magnetic properties also indicated an increase in the field and the saturation magnetization by enhancing the size. The heat generation efficiency of the nanoparticles suspension was measured by the application of an alternating magnetic field at 92 kHz and the temperature increase curve was calculated versus time. These experiments showed that the highest value of specific adsorption rate for nanoparticles of about 9 nm, and particles larger or smaller than that amount led to a smaller absorption rate. The results of this study, suggest an optimal size for hypertherma applications in which the highest thermal efficiency is achieved.
کلیدواژهها [English]
- spinel ferrite
- CoFe2O4 nanoparticles
- magnetism
- particle size
- magnetic hyperthermia
2. S Ebrahimisadr, B Aslibeiki, and R Asadi, Physica C 549 (2018) 119.
3. I Sharifi, H Shokrollahi, and S Amiri, J. Magn. Magn. Mater. 324 (2012) 903.
4. M Jeun, S Bae, A Tomitaka, Y Takemura, K H Park, S H Paek, and K W Chung, Appl. Phys. Lett. 95 (2009) 082501.
5. G Vallejo-Fernandez, Apos, and K Grady, Appl. Phys. Lett. 103 (2013) 142417.
6. R R Shah, T P Davis, A L Glover, D E Nikles, and C S Brazel, J. Magn. Magn. Mater. 387 (2015) 96.
7. Ö Çelik, M M Can, and T Firat, Journal of Nanoparticle Research 16 (2014) 2321.
8. K Bakoglidis, K Simeonidis, D Sakellari, G Stefanou, and M Angelakeris, IEEE Trans Magn 48 (2012) 1320.
9. B Aslibeiki, M H Ehsani, F Nasirzadeh, and M A Mohammadi, Materials Research Express 4 (2017) 075051.
10. B Mehdaoui, A Meffre, J Carrey, S Lachaize, L M Lacroix, M Gougeon, B Chaudret, and M Respaud, Adv. Funct. Mater. 21 (2011) 4573.
11. M Houshiar, A Abareshi, S Porzamani, and L Jamilpanah, Iran. J. Phys. Res. 18 (2018) 359.
12. F Fabris, Y Xing, D Franceschini, D Sanchez, M Alzamora, and W Nunes, Journal of Applied Physics 122 (2017) 063901.
13. T Raming, A J Winnubst, C M van Kats, and A Philipse, Journal of Colloid and Interface Science 249 (2002) 346.
14. B Aslibeiki, G Varvaro, D Peddis, and P Kameli, J Magn Magn Mater 422 (2017) 7.
15. K Maaz, A Mumtaz, S Hasanain, and A Ceylan, Journal of Magnetism and Magnetic Materials 308 (2007) 289.
16. K Maaz, S Karim, A Mumtaz, S Hasanain, J Liu, and J Duan, Journal of Magnetism and Magnetic Materials 321 (2009) 1838.
17. B Aslibeiki, P Kameli, and H Salamati, Journal of Applied Physics 119 (2016) 063901.
18. B Aslibeiki, P Kameli, and H Salamati, Iran. J. Phys. Res. 16, 4 (2017) 251.
19. Y Qu, H Yang, N Yang, Y Fan, H Zhu, G Zou, Materials Letters 60 (2006) 3548.
20. M Ma, Y Wu, J Zhou, Y Sun, Y Zhang, and N Gu, Journal of Magnetism and Magnetic Materials 68 (2004) 33.
21. M Kersten, Z Phys. 44 (1943) 63.
22. G Herzer, Journal of Magnetism and Magnetic Materials 112 (1992) 258.
23. B Aslibeiki, P Kameli, and M Ehsani, Ceramics International 42 (2016) 12789.
24. T Daou, J Greneche, G Pourroy, S Buathong, A Derory, C Ulhaq-Bouillet, B Donnio, D Guillon, and S Begin-Colin, Chemistry of Materials 20 (2008) 5869.
25. R Borges, W Guichard, J Lunney, J Coey, and F Ott, Journal of Applied Physics 89 (2001) 3868.
26. R H Kodama, A E Berkowitz, E McNiff Jr, and S Foner, Physical Review Letters 77 (1996) 394.
27. J Curiale, M Granada, H Troiani, R Sánchez, A Leyva, P Levy, and K Samwer, Applied Physics Letters 95 (2009) 043106.
28. M Grigorova, H Blythe, V Blaskov, V Rusanov, V Petkov, V Masheva, D Nihtianova, L M Martinez, J Munoz, and M Mikhov, Journal of Magnetism and Magnetic Materials 183 (1998) 163.
29. J Chen, C Sorensen, K Klabunde, G Hadjipanayis, E Devlin, and A Kostikas, Phys. Rev. B 54 (1996) 9288.
30. M K Surendra, R Dutta, and M R Rao, Materials Research Express 1 (2014) 026107.
31. B Aslibeiki and P Kameli, Iran. J. Phys. Res. 17, 3 (2017) 421.
32. R D Raland, D Saikia, C Borgohain, and J P Borah, J. Phys. D: Appl. Phys. 50 (2017) 325004.
33. E Myrovali, N Maniotis, A Makridis, A Terzopoulou, V Ntomprougkidis, K Simeonidis, D Sakellari, O Kalogirou, T Samaras, R Salikhov, M Spasova, M Farle, U Wiedwald, and M Angelakeris, Scientific Reports 6 (2016) 37934.
34. W Zhang, X Zuo, Y Niu, C Wu, S Wang, S Guan, and S R P Silva, Nanoscale 9 (2017) 13929.
35. M Johannsen, U Gneveckow, L Eckelt, A Feussner, N Waldöfner, R Scholz, S Deger, P Wust, S Loening. and A Jordan, International Journal of Hyperthermia, 21 (2005) 637.
36. H Rudolf, D Silvio, M Robert, and Z Matthias, J. Phys. Condens. Matter. 18 (2006) S2919.
37. B Aslibeiki, P Kameli, and H Salamati, Journal of Nanoparticle Research 15 (2013) 1.
38. J Carrey, B Mehdaoui, and M Respaud, Journal of Applied Physics 109 (2011) 083921.