نویسندگان
گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه
چکیده
اطلاعات فیشر کوانتومی مربوط به یک پارامتر، میزان حساسیت حالت را نسبت به تغییر آن پارامتر مشخص میکند. در این مقاله ما اطلاعات فیشر کوانتومی را برای حالت خالص W برای چهار، پنج، شش و هفت ذره را در کانالهای ناهمدوسی از قبیل میرایی دامنه، میرایی فاز و کانال واقطبش مورد مطالعه قرار میدهیم. با استفاده از نمایش کراووس برای مؤلفههای کانالهای ناهمدوسی، اطلاعات فیشر کوانتومی را به صورت کاملاً تحلیلی بررسی میکنیم. مشاهده میکنیم که برای حالت خالص W میزان اطلاعات فیشر کوانتومی و در نتیجه میزان درهمتنیدگی با اعمال نوفههای کوانتومی، که به طور یکسان هر یک از ذرات را تحت تأثیر قرار میدهند، کاهش یافته و در بعضی مواقع درای افزایش نسبی در میزان اطلاعات فیشر کوانتومی به ازای مقادیری خاصی از ضریب واپاشی، p < /span>، است. همچنین نشان میدهیم که نوفه میرایی فاز باعث صفر شدن اطلاعات فیشر کوانتومی برای حالت خالص W میشود.
کلیدواژهها
عنوان مقاله [English]
Decoherence effects on quantum Fisher information of multi-qubit W states
نویسندگان [English]
- T Homayoun
- K Aghayar
چکیده [English]
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate the quantum fisher information quite analytically. We observe that for the W state, the amount of the quantum fisher information and consequently, the amount of entanglement are reduced by applying the quantum noises, which affect each particle in the same way. In some cases, a relative increase appears in the quantum fisher information for certain values of the decay strength p. We also show that the phase damping channel vanishes the value of the quantum fisher information for the W state.
کلیدواژهها [English]
- quantum Fisher information
- entanglement
- W state
- decoherrence
1. M Nakahara and T Ohmi, “Quantum Computing: from Linear Algebra to Physical Realizations”, CRC Press (2008). 2. S Rashidi and H Goudarzi, Iranian Journal of Physics Research 16, 1 (2016) 111. 3. A Shokri and M Shalileh, Iranian Journal of Physics Research 13, 3 (2013) 241. 4. N Ghafourian Momen Razavi, A Ahanj and M Sarbishei, Iranian Journal of Physics Research 15, 4 (2016) 415. 5. R Afzali, M Saleh kotahi, and J Sobhani, Iranian Journal of Physics Research 12, 2 (2013) 289. 6. R Horodecki, P Horodecki, M Horodecki, and K Horodecki, Rev. Mod. Phys. 81 (2009) 865. 7. W K Wootters, Phys. Rev. Lett. 80 (1998) 2245. 8. J Audretsch, “Entangled Systems: New Directions in Quantum Physics”, John Wiley & Sons (2008). 9. L Amico, R Fazio, A Osterloh, and V Vedral, Rev. Mod. Phys. 80 (2008) 517. 10. M A Nielsen and I L Chuang, “Quantum Computation and Quantum Information”, Cambridge University press (2010). 11. M C Arnesen, S Bose, and V Vedral, Phys. Rev. Lett. 87 (2001) 017901. 12. O Ghne, G Tth, and H J Briegel, New Journal of Physics 7 (2005) 229. 13. Y Yeo, Phys. Rev. A 68 (2003) 022316. 14. S Bose, Phys. Rev. Lett. 91 (2003) 207901. 15. J P Barjaktarevic et al., Phys. Rev. Lett. 95 (2005) 230501. 16. L Qiu, A M Wang, and X S Ma, Physica A 383 (2007) 325. 17. O E Barndorff-Nielsen and R D Gill, Journal of Physics A: Mathematical and General 33 (2000) 4481. 18. I Apellaniz et al., Phys. Rev. A 95 (2017) 032330. 19. L Pezzé and A Smerzi, Phys. Rev. Lett. 102 (2009) 100401. 20. N Li and S Luo, Phys. Rev. A 88 (2013) 014301. 21. S S Mirkhalaf and A Smerzi, Phys. Rev. A 95 (2017) 022302. 22. Y Hong, S Luo, H Song, Phys. Rev. A 91 (2015) 042313. 23. G Tóth, Phys. Rev. A 85 (2012) 022322. 24. P Hyllus et al., Phys. Rev. A 85 (2012) 022321. 25. S L Braunstein and C M Caves, Phys. Rev. Lett. 72 (1994) 3439. 26. C W Helstrom, Journal of Statistical Physics 1 (1969) 231. 27. A S Holevo, “Probabilistic and Statistical Aspects of Quantum Theory”, New York, Amsterdam (1982). 28. F Ozaydin, Phys. Lett. A 378 (2014) 3161. 29. F Chapeau-Blondeau, Phys. Lett. A 381 (2017) 1369. 30. D Hosler and P Kok, Phys. Rev. A 88 (2013) 052112. 31. S Luo, “Wigner-Yanase Skew Information vs. Quantum Fisher Information”, Proceedings of the American Mathematical Society 132 (2004) 885. 32. G T´oth and I Apellaniz, Journal of Physics A: Mathematical and Theoretical 47 (2014) 424006. 33. S L Braunstein, C M Caves, and G Milburn, Annals of Physics 247 (1996) 135. 34. J Ma, Y-x Huang, X Wang, and C P Sun, Phys. Rev. A 84 (2011) 022302