نویسندگان

1 دانشکده فیزیک، دانشگاه کاشان

2 گروه نانوفیزیک، دانشگاه صنعتی مالک اشتر، تهران

چکیده

در کار حاضر، نانومیله­ های اکسید روی/اکسید روی با پوسته آلاییده شده با غلظت­ های مختلف مس با استفاده از یک روش رشد دو مرحله­ ای شامل رشد گرمابی نانومیله ­ها به دنبال غوطه­ وری در محلول پوشش ­دهی ساخته شدند. تاثیر ناخالصی مس افزوده شده به پوستهی نانومیله­ ها بر خواص ساختاری، اپتیکی و الکتریکی آنها بررسی شد. تصاویر میکروسکوپ الکترونی نشان داد که پوشش ایجاد شده روی میله­ ها، قطر متوسط آنها را از حدود nm 40 به حدود nm 60 افزایش می­دهد. الگوهای پراش اشعه ایکس برای همه نمونه­ ها، تشکیل ساختار اکسید روی شش گوشی ورتزیت بدون تشکیل هیچ فازی از اکسیدهای مس را نشان می­دهد. همچنین جابه ­جایی قله (002) به زوایای کوچک تر می­تواند دلیلی بر حضور غالب یونهای Cu+ در شبکه اکسید روی باشد. باتوجه به اندازه ­گیری منحنی­ های جریان-ولتاژ؛ مقاومت الکتریکی نانومیله ­ها، با افزایش غلظت مس تا 5/4 درصد اتمی کاهش می ­یابد. این کاهش مقاومت براساس افزایش حامل­ های بار ناشی از حضور یون های Cu+ توضیح داده شد. پاسخ حسگرهای ساخته شده بر پایه نانومیله­ های هسته/پوسته اکسید روی نسبت به تابش فرابنفش اندازه ­گیری شد. با افزایش میزان آلاینده مس، میزان پاسخ حسگرها یک روند افزایشی (بیش از 5 برابر) را نشان می­دهد.
 

کلیدواژه‌ها

عنوان مقاله [English]

The effect of the Cu dopant on the ultraviolet photodetector based on ZnO nanorods

نویسندگان [English]

  • A khayatian 1
  • M Almasi Kashi 1
  • R Azimirad 2
  • R shakernejad 1
  • S Safa 2

چکیده [English]

In this work, a (ZnO)/(Cu-doped ZnO) core/shell nanorods array was fabricated by a two-step method: ZnO hydrothermal synthesis followed by encapsulation via a dip-coating process. The effects of the Cu dopant concentration on the structural, electrical and optical properties of the nanorods were studied. The SEM images showed that the encapsulation increased the nanorods average diameter from ~40 to ~60 nm. All ZnO core/shell nanorods showed a hexagonal wurtzite structure with no trace of a Cu oxide phase. A peak shift was observed in the XRD pattern, indicating the better Cu+ substitution into the Zn sites. The I–V measurements also showed that Cu doping up to 4.5 at.% decreased the samples resistance, which could be attributed to the +1 valance state of the Cu ions. It was also found that Cu doping increased the UV photoresponsivity of the photodetectors made by Cu:ZnO.
 

کلیدواژه‌ها [English]

  • core/shell nanorods
  • ZnO
  • Cu dopant
  • UV photodetector
1. S Safa, M Asghari, S Mokhtari, and R Azimirad, Iranian J. Phys. Res. 17, 4 (2017) 561. 2. K Kihara and G Donnay, The Canadian Mineralogist 23 (1985) 647. 3. P Thompson, D Cox, and J Hastings, Journal of Applied Crystallography 20 (1987) 79. 4. O Akhavan, M Mehrabian, K Mirabbaszadeh, and R Azimirad, Journal of Physics D: Applied Physics 42 (2009) 225305. 5. L Ahmadkhani and R Abbasi, Iranian J. Phys. Res. 17, 3 (2017) 337. 17، 3 (2017) 337. 6. S F Akhtarianfar, A Khayatian, R Shakernejad, M Almasi-Kashi, and S W Hong, Royal Society of Chemistry, Advances 7 (2017) 32316. 7. A Khayatian, M A Kashi, R Azimirad, and S Safa, Journal of Physics D: Applied Physics 47 (2014) 075003. 8. G Srinivasan, N Gopalakrishnan, Y Yu, R Kesavamoorthy, and J Kumar, Superlattices and Microstructures 43 (2008) 112. 9. L E Greene, M Law, J Goldberger, F Kim, J C Johnson, Y Zhang, R J Saykally, and P Yang, Angewandte Chemie International Edition 42 (2003) 3031. 10. J-W Kim, S J Lee, P Biswas, T I Lee, and J-M Myoung, Applied Surface Science 406 (2017) 192. 11. Y-M Lee, C-M Huang, H-W Chen, and H-W Yang, Sensors and Actuators A: Physical 189 (2013) 307. 12. B S Sannakashappanavar, C Byrareddy, P S Kumar, and A B Yadav, Superlattices and Microstructures 117 (2018) 503. 13. Q Zhang, M Honda, S Takayanagi, and Y Ichikawa, Japanese Journal of Applied Physics 57 (2018) 070306. 14. M Kwiatkowski, R Chassagnon, O Heintz, N Geoffroy, M Skompska, and I Bezverkhyy, Applied Catalysis B: Environmental 204 (2017) 200. 15. B Zhang et al., Materials Letters 160 (2015) 227. 16. W Xia, L Guan, X Zeng, J Yang, H He, and Y Cao, Journal of Physics D: Applied Physics 52 (2018) 035501. 17. S Ilican, Y Caglar, and M Caglar, Journal of Optoelectronics and Advanced Materials 10 (2008) 2578. 18. O Lupan, T Pauporté, B Viana, and P Aschehoug, Electrochimica Acta 56 (2011) 10543. 19. M Zhao, X Wang, L Ning, J Jia, X Li, and L Cao, Sensors and Actuators B: Chemical 156 (2011) 588. 20. R Mohan, K Krishnamoorthy, and S-J Kim, Solid State Communications 152 (2012) 375. 21. M Babamoradi, H Sadeghi, R Azimirad, and S Safa, Optik 167 (2018) 88. 22. M-h Li, X-m Chen, J-p Xu, X-s Zhang, Y-y Wu, P Li, X-p Niu, C-y Luo, and L Li, Optoelectronics Letters 8 (2012) 241. 23. M Babikier, D Wang, J Wang, Q Li, J Sun, Y Yan, Q Yu, and S Jiao, Nanoscale Research Letters 9 (2014) 199. 24. S Pung, C Ong, K M Isha, and M Othman, Sains Malaysiana 43 (2014) 273. 25. R Shabannia, Journal of Molecular Structure 1118 (2016) 157. 26. C-L Hsu, Y-D Gao, Y-S Chen, and T-J Hsueh, American Chemical Society, Applied Materials & Interfaces 6 (2014) 4277 . 27. X Wang, C Song, K Geng, F Zeng, and F Pan, Applied Surface Science 253 (2007) 6905. 28. V Vaiano, G Iervolino, and L Rizzo, Applied Catalysis B: Environmental 12 (2018) 562. 29. C Lin et al., Thin Solid Films 529 (2013) 479. 30. M B Rahmani, S-H Keshmiri, M Shafiei, K Latham, W Wlodarski, J Du Plessis, and K Kalantar-Zadeh, Sensor Letters 7 (2009) 621. 31. G Shukla, Applied Physics A 97 (2009) 115. 32. C Chang, M Hon, and I Leu, Sensors and Actuators B: Chemical 151 (2010) 15. 33. C Soci, A Zhang, B Xiang, S A Dayeh, D Aplin, J Park, X Bao, Y-H Lo, and D Wang, Nano Letters 7 (2007) 1003. 34. W L Ong, H Huang, J Xiao, K Zeng, and G W Ho, Nanoscale 6 (2014) 1680. 35. X Wang, D Li, F Zeng, and F Pan, Journal of Physics D: Applied Physics 38 (2005) 4104. 36. S Singhal, J Kaur, T Namgyal, and R Sharma, Physica B: Condensed Matter 407 (2012) 1223. 37. W Yan et al., Advanced Materials 24 (2012) 353. 38. E Chikoidze, M Boshta, M Sayed, and Y Dumont, Journal of Applied Physics 113 (2013) 043713. 39. M Mehrabian, R Azimirad, K Mirabbaszadeh, H Afarideh, and M Davoudian, Physica E: Low-Dimensional Systems and Nanostructures 43 (2011) 1141.

تحت نظارت وف ایرانی