نویسندگان

دانشکده فیزیک، دانشگاه شهید بهشتی، تهران

چکیده

لکه سرد یکی از ناهنجاری‌های رصد شده در تابش زمینه‌کیهانی است و می‌تواند بر اثر عوامل مختلف اولیه و یا ثانویه ایجاد شده باشد. در این تحقیق، اثر همگرایی گرانشی نامزدهایی که می‌توانستند این لکه سرد را تولید کنند مانند یک تهی‌جای بزرگ و بافت کیهانی را بر روی مؤلفه‌های مختلف میدان تصادفی CMB بررسی می‌کنیم. نتایج ما نشان می‌دهد که نسبت سیگنال به نوفه ناشی از اثر همگرایی گرانشی بر روی میدان تصادفی دمایی CMB بیشتر از میدان قطبش است. ما دریافتیم که برای یک تهی‌جا با تقارن استوانه‌ای در انتقال به سرخ  z_Void=0.8 با تباین چگالی δ=-1.0  ، با حدود هزار دقیقه رصد می‌توان سهم تهی‌جا را تعیین کرد. این درحالی است برای یک بافت کیهانی که در انتقال به سرخ  z_Texture=6.0 زندگی می‌کند، رصد طولانی‌تری نیاز است. ما انتظار داریم که رصدهای آینده با قدرت تفکیک بالا، بتوانند قیدهای قوی بر روی دامنه این مدل‌ها، فراهم کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Polarization of the CMB cold spot by the gravitational lensing of a cosmic void and texture

نویسندگان [English]

  • S M S Movahed
  • M Farhang

چکیده [English]

The cold spot is one of the observed CMB anomalies proposed to be produced by various primary and secondary effects. In this work, we study the gravitational lensing of some of the candidates that could produce the cold spot, namely a huge void and a cosmic texture, on the various components of CMB random field. Our results demonstrated that the signal to noise ratio of gravitational lensing effect on the CMB temperature field is higher than that of on CMB polarization. We found that for a cylindrically symmetric void at z_Void=0.8 with σ=-1.0   a thousand minute observation would detect the gravitational lensing signal while for a cosmic texture at z_Texture=6.0 a longer observation is required. We expect the future high resolution surveys can put strong constraints on the amplitudes of the template of these models.

کلیدواژه‌ها [English]

  • CMB stochastic field
  • gravitational lensing
  • likelihood analysis
1. W Hu, and S Dodelson, Annual Review of Astronomy and Astrophysics 40, 1 (2002) 171. 2. N Aghanim et al., “Planck 2018 results. VI. Cosmological parameters”, arXiv preprint arXiv:1807.06209 (2018). 3. P A R Ade et al., Astronomy & Astrophysics 594 (2016) A16. 4. M Cruz et al., The Astrophysical Journal 655, 1 (2007) 11. 5. J DSchwarz et al., Classical and Quantum Gravity 33, 18 (2016) 184001. 6. J A R Cembranos et al., Journal of Cosmology and Astroparticle Physics 2008, 10 (2008) 039. 7. M Cruz et al., Monthly Notices of the Royal Astronomical Society 390, 3 (2008) 913. 8. K Inoue and J Silk, The Astrophysical Journal 648, 1 (2006) 23. 9. M Cruz et al., Science 318, 5856 (2007) 1612. 10. P Vielva, Advances in Astronomy 2010 (2010) 1. 11. U Seljak, The Astrophysical Journal 482, 1 (1997) 6. 12. M Zaldarriaga and U Seljak, Physical Review D 55, 4 (1997) 1830. 13. E Newman and R Penrose, J. Math. Phys. 7, 863 (1966). 14. M J Rees, M J Rees and D W Sciama, Nature 217, (1968) 511; 217 (1968) 511. 15. K Inoue, Kaiki and J Silk, The Astrophysical Journal 664, 2 (2007) 65. 16. E Martinez-Gonzalez, J L Sanz, and J Silk, The Astrophysical Journal 355 (1990) L5. 17. S Das and D Spergel, Physical Review D 79, 4 (2009) 043007. 18. E Platen, R Weygaert, and B Jones, Monthly Notices of the Royal Astronomical Society 387, 1 (2008) 128. 19. S Shandarin et al., “Shapes and Sizes of Voids in the Lambda Cold Dark Matter Universe: Excursion Set Approach”, Monthly Notices of the Royal Astronomical Society 367, 4 (2006) 1629. 20. M Bartelmann, and P Schneider, Physics Reports 340, 4-5 (2001) 291. 21. N Goldenfeld, “Lectures on Phase Transitions and the Renormalization Group”, CRC Press (2018). 22. M Griffin, et al., Physical Review X 2.4 (2012) 041022. 23. M Sakellariadou, “Inflationary Cosmology,” Springer, Berlin, Heidelberg (2008) 359. 24. N Turok, Physical Review Letters 63, 24 (1989) 2625. 25. N Turok, and D Spergel, Physical Review Letters 64, 23 (1990) 2736. 26. R Durrer et al., Nuclear Physics B 368, 2 (1992) 527.

تحت نظارت وف ایرانی