نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشکدة لیزر و پلاسما، دانشگاه شهید بهشتی، تهران

چکیده

در این مقاله پارامترهای دینامیکی یک گلوله‌ی پلاسمایی (موج یونیزان هدایت شده) در حضور گازهای اکسیژن، نیتروژن و هوای خشک مورد بررسی قرار میگیرد. دینامیک گلوله‌ی پلاسمایی تولید شده توسط یک جت پلاسمای هلیوم در فشار اتمسفر با فرکانس 30 کیلوهرتز از لحظه خروج از لوله جت تا لحظه نابودی کامل در محیط گازی اطراف آن توسط یک دوربین فوق سریع (ICCD) ثبت و اندازه گیری می‌شود. گلوله‌ی پلاسمایی با تاثیرپذیری از گازهای محیطی دارای سرعت، اندازه و طول انتشار متفاوتی در هر کدام از گازهای محیطی می‌باشد. سرعت گلوله پلاسمایی در اکسیژن و هوای خشک بیشتر از نیتروژن می‌باشد و تا حدود 18 کیلومتر برثانیه نیز می‌رسد. بیشترین طول انتشار گلوله پلاسمایی در محیط نیتروژن و هوای خشک با حدود 12 میلی‌متر می‌باشد. طیف تابشی جت پلاسمای هلیوم نیز جهت بررسی گونه های شیمیایی تولید شده در گازهای محیطی مختلف اندازه گیری شد. نتایج این آزمایشات نشان دهنده تاثیر گازهای محیطی و بخصوص نقش مولکول‌های اکسیژن بر انتشار گلوله پلاسمایی می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Studying the dynamic parameters of the plasma pellet produced by helium jet in the presence of different ambient gases

نویسندگان [English]

  • H Ghomi
  • S Razavizadeh

Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

چکیده [English]

In this paper, dynamical parameters of a plasma bullet (guided ionization wave) were studied in different gases such as oxygen, nitrogen and dry air. The dynamics of a plasma bullet, which is generated by a 30 kHz atmospheric pressure helium plasma jet, was measured using a high-speed ICCD camera from the starting moment of propagation at the end of the jet’s capillary to the vanishing point in the surrounding gas. The plasma bullet has different propagation velocity, diameter and propagation length in different surrounding gases. The velocity of the plasma bullet is higher in oxygen and dry air compared to nitrogen and reaches up to 18 km/s. The maximum propagation length is 12 mm in nitrogen and dry air. The spectroscopic emission of helium plasma jet was also measured to investigate the chemical species in different surrounding gases. The result of this study shows the influence of the surrounding gas on the propagation of plasma bullets and especially the role of oxygen in the propagation mechanism.

کلیدواژه‌ها [English]

  • plasma pellet
  • plasma jet
  • guided ionizing wave
  • ultrafast camera
  • ambient gas
  • emission length

  1. G Fridman, G Friedman, A Gutsol, A B Shekhter, V N Vasilets and A Fridman, Applied plasma medicine Plasma Processes and Polymers 5 (2008) 503.
  2. M Laroussi, Plasma Sci. 37 (2009) 714–25
  3. M Laroussi, Plasma Sci. 43 (2015) 703.
  4. F Sohbatzadeh, M Bagheri, and S Motallebi, Iran. J. Phys. Res. 16, 4 (2017) 291.

4. ف صحبت‌زاده، م باقری و س مطلبی، مجلة پژوهش فیزیک ایران 16 4 (1395) 291.

  1. M Teschke, J Kedzierski, E G Finantu-Dinu, D Korzec and J Engemann, Plasma Sci.c 33 (2005) 310.
  2. E Karakas, M A Akman, and M Laroussi, Plasma Sources Science and Technology. 21, 3 (2012) 034016.
  3. SN Siadati, F Sohbatzadeh, and SK Alavi, Electrical and optical investigations of plasma bullets driven by different. Physica Scripta. 90, 8 (2015) 085602.
  4. X Lu and M Laroussi, J. Appl. Phys. 100 (2006) 063302.
  5. X Lu, M Laroussi and V Puech, Plasma Sources Science and Technology 21 (2012) 034005
  6. X Lu, G V Naidis, M Laroussi and K Ostrikov, Phys. Rep. 540 (2014) 123.
  7. Y Xian, P Zhang, X Pei and X Lu, IEEE Trans. Plasma Sci. 42 (2014) 2448.
  8. A Schmidt-Bleker, S A Norberg, and J Winter, E Johnsen, S Reuter, K D Weltmann, and M J Kushner, Plasma Sources Science and Technology 24 (2015) 035022.
  9. Y Xian, X Lu, J Liu, S Wu, D Liu, and Y Pan, Plasma Sources Science and Technology 21 (2012) 034013.
  10. S Wu, Q Huang, Z Wang, and X Lu, IEEE Trans. Plasma Sci. 39 (2011) 2286.
  11. M A Akman and M Laroussi, IEEE Trans. Plasma Sci. 41 (2013) 839.
  12. J Y Won and P F Williams, J. Phys. D: Appl. Phys. 35 (2002) 205.
  13. T M Briels, E M Van Veldhuizen and U Ebert, IEEE Trans. Plasma Sci. 36 (2008) 906.
  14. D Breden, K Miki, and L L Raja, Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets / bullets Plasma Sources Science and Technology 21 (2012) 034011.
  15. E Slikboer, O Guaitella, and A Sobota, Time-resolved electric field measurements during and after the initialization of a kHz plasma jetrom streamers to guided streamers, Plasma Sources Science and Technology 25 (2016) 03LT04.
  16. E Slikboer, E Garcia-Caurel, O Guaitella, and A Sobota, Charge transfer to a dielectric target by guided ionization waves using electric field measurements Plasma Sources Science and Technology 26 (2017) 035002.
  17. GB Sretenović, O Guaitella, A Sobota, IB Krstić, VV Kovačević, BM Obradović, MM Kuraica, Electric field measurement in the dielectric tube of helium atmospheric pressure plasma, Journal of Applied Physics. 2017 Mar 28;121(12):123304.
  18. Z Xiong, E Robert, V Sarron, J-M Pouvesle, and M J Kushner, J. Phys. D: Appl. Phys. 45 (2012) 275201.
  19. A Sobota, O Guaitella, and A Rousseau, Plasma Sources Science and Technology 23 (2014) 025016.
  20. A Begum, M Laroussi, and M R Pervez, Atmospheric pressure He-air plasma jet: breakdown process and propagation phenomenon AIP Adv. 3 (2013) 062117.
  21. V Poenariu, M R Wertheimer, and R Bartnikas, Spectroscopic diagnostics of atmospheric pressure helium dielectric barrier discharges in divergent fields Plasma Processes and Polymers 3 (2006) 17.
  22. J J Liu and M G Kong, J. Phys. D: Appl. Phys. 44 (2011) 345203.
  23. R Ono and T Oda, J. Phys. D: Appl. Phys. 36 (2003) 1952.
  24. GM Thomas and TM Helliwell, “Journal of Quantitative Spectroscopy and Radiative Transfer”, 10, 5 (1970) 423.

تحت نظارت وف ایرانی