نوع مقاله: مقاله پژوهشی

نویسنده

گروه فیزیک، دانشکده علوم، دانشگاه صنعتی قم، قم

چکیده

اخیراً مدل هایزنبرگ- کیتائوی گسترده برای توصیف عایق­های مات اسپین- مدار لایة نظیر اکسید ایریدیت­ها و  با شبکة لانه زنبوری مطرح شده است. در این مقاله با شروع از مدل آلاییدة  با حفره، پایداری فازهای ابررسانایی اسپین- تک­تایی و - سه­تایی را به خاطر رقابت بین برهم­کنش­های تبادلی فرومغناطیس و پادفرومغناطیس بررسی می­کنیم. حل عددی خودسازگار معادلات گاف خطی نشان می­دهد که برهم­کنش­های تبادلی هایزنبرگ و کیتائوی فرومغناطیس به تنهایی می‌توانند باعث پایداری فاز ابررسانایی اسپین- سه­تایی در این دسته از مواد شوند. در ضمن، برهم­کنش غیرقطری  منجر به گسترش ناحیة حالت اسپین- سه­تایی در سیمای فازِ مدل آلاییدة هایزنبرگ- کیتائو با  و  می­شود. همچنین نتایج نشان می­دهد که برهم­کنش غیرقطری فرومغناطیس به تنهایی در مقابل برهم­کنش­های هایزنبرگ و کیتائوی پادفرومغناطیس نمی­تواند باعث پایداری فاز موج -p شود.

کلیدواژه‌ها

عنوان مقاله [English]

Competition between spin-singlet and -triplet superconducting states in the doped extended Kitaev-Heisenberg model

نویسنده [English]

  • Mohammad-Hossein Zare

Department of Physics, Faculty of Science, Qom University of Technology, Qom, Iran

چکیده [English]

Recently, the extended Kitaev-Heisenberg model has been proposed to describe spin-orbital Mott insulators, such as iridate oxides and ruthenium chloride with honeycomb lattice. Using mean-field theory, we obtain the linear gap equations to find all possible superconducting phases in terms of different exchanges and doping levels. Our calculation based  on the hole-doped model, in the presence of the off-diagonal exchange  , shows the spin-triplet states can be stable in a larger area related to the doped Kitaev-Heisenberg model with K<0 and JH>0. However, the finite ferromagnetic off-diagonal exchange solely cannot generate the triplet pairing instabilities in competition with the antiferromagnetic-Heisenberg and -Kitaev exchanges.

کلیدواژه‌ها [English]

  • spin-orbit Mott insulator
  • unconventional superconductivity
  • extended kitaev-heisenberg model

  1. P Fazekas, “Lecture note on electron correlation and magnetism”. London, World Scientific (1999).
  2. L Balents, Nature. 464 (2010) 199.
  3. X-G Wen and Q Niu, Phys. Rev. B 41 (1990) 9377.
  4. X-G Wen, Adv. Phys. 44 (1995) 405.
  5. D C Tsui, H L Stormer, and A C Gossard, Phys. Rev. Lett. 48 (1982) 1559.
  6. F D M Haldane, Phys. Rev. Lett. 51 (1983) 605.
  7. M Z Hasan and C L Kane, Rev. Mod. Phys. 82 (2010) 3045.
  8. X-L Qi and S-C Zhang, Rev. Mod. Phys. 83 (2011) 1057.
  9. A Kitaev, Ann. Phys. 321 (2006) 2.
  10. W Witczak-Krempa, G Chen, Y B Kim, and L Balents, Annu. Rev. Condens. Matter Phys. 5 (2014) 57.
  11. G Cao and P Schlottmann, Rep. Prog. Phys. 81 (2018) 042502.
  12. G Jackeli and G Khaliullin, Phys. Rev. Lett. 102 (2009) 017205.
  13. M Hermanns, I Kimichi, and J Knolle, Annu. Rev. Condens. Matter Phys. 9 (2018) 17.
  14. H Takagi, T Takayama, G Jackeli, G Khaliullin, and S E Nagler, Nature Reviews Physics. 1 (2019) 264.
  15. K W Plumb, J P Clancy, L J Sandilands, V V Shankar, Y F Hu, K S Burch, H Y Kee, and Y J Kim, Phys. Rev. B 90 (2014) 041112.
  16. S M Winter, Y Li, H O Jeschke, and R Valenti, Phys. Rev. B 93 (2016) 214431.
  17. R Yadav, R Ray, M S Eldeeb, S Nishimoto, L Hozoi, and J van den Brink, Phys. Rev. Lett. 121 (2018) 197203.
  18. A Banerjee, J Yan, J Knolle, C A Bridges, M B Stone, M D Lumsden, D G Mandrus, D A Tennant, R Moessner, and S E Nagler, Science.356 (2017) 1055.
  19. P A Lee, N Nagaosa, and X-G Wen, Rev. Mod. Phys. 78 (2006) 17.
  20. K L Hur and T M Rice, Ann. Phys. 324 (2009) 1452.
  21. A M Black-Schaffer and S Doniach, Phys. Rev. B 75 (2007) 134512.
  22. T Hyart, A R Wright, G Khaliullin, and B Rosenow, Phys. Rev. B85 (2012) 140510.
  23. D D Scherer, M M Scherer, G Khaliullin, C Honerkamp, and B Rosenow, Phys. Rev. B 90 (2014) 045135.
  24. Y-Z You, I Kimchi, and A Vishwanath, Phys. Rev. B 86 (2012) 085145.
  25. J Schmidt, D D Scherer, and A M Black-Schaffer, Phys. Rev. B 97 (2018) 014504.
  26. M H Zare, M Biderang, and A Akbari, Phys. Rev. B 96 (2017) 205156.
  27. G Baskaran, Z Zou, and P W Anderson, Solid State Commun. 63 (1987) 973.
  28. G Kotliar, Phys. Rev. B 37 (1988) 3664.
  29. M Sigrist and K Ueda, Rev. Mod. Phys. 63 (1991) 239.
  30. V M Katukuri, S Nishimoto, V Yushankhai, A Stoyanova, H Kandpal, S Choi, R Coldea, I Rousochatzakis, L Hozoi, and J van den Brink, New J. Phys. 16 (2014) 013056.
  31. R Yadav, N A Bogdanov, V M Katukuri, S Nishimoto, J van den Brink, and L Hozoi, Sci. Rep. 6 (2016) 37925.
  32. H-S Kim and H-Y Kee, Phys. Rev. B 93 (2016) 155143.
  33. A F Volkov, A Anishchanka and K B Efetov, Phys. Rev. B 73 (2015) 104412.
  34. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113.

تحت نظارت وف ایرانی