نوع مقاله : مقاله پژوهشی
نویسندگان
دانشکده فیزیک، دانشگاه صنعتی اصفهان
چکیده
هدف از این مطالعه بررسی ویژگیهای ترکیب La0/6Sr0/4Fe0/8Mn0/2O3-δ (LSFM) به عنوان کاتد پیلهای سوختی اکسید جامد دمای میانی است. مادة LSFM با استفاده از روش سل- ژل تهیه شد. خواص ساختاری، الکتریکی و الکتروشیمیایی آن با پراش اشعة ایکس (XRD)، میکروسکوپ الکترونی روبشی(SEM)، اندازهگیری مقاومت ویژه به روش چهار میلهای دمای بالا (HTRM) و طیفسنجی امپدانس الکتروشیمیایی (EIS) بررسی شد. الگوهای XRD نشان داد که LSFM دارای ساختار رومبوهدرال و گروه فضایی R-3c است و ترکیب LSFM دارای پایداری شیمیایی با الکترولیت زیرکونیای پایدار شده با ایتریم (YSZ)، است. رسانندگی ویژة (Conductivity) نمونه با افزایش دما از دمای اتاق، افزایش یافت و بیشترین رسانندگی ویژه در دمای 739 درجة سانتیگراد مشاهده شد و مقدارآن برابر با S.cm-1 64/3 به دست آمد. مقادیر مقاومت ویژة سطحی (ASR) کاتد LSFM برای دماهای 600، 650، 700، 750، 800 درجة سانتیگراد، به ترتیب 69/1، 01/1، 63/0، 52/0 و Ω.cm2 45/0 است.
کلیدواژهها
عنوان مقاله [English]
Preparation and characterization of La0.6Sr0.4Fe0.8Mn0.2O3-δ cathode of intermediate temperature solid oxide fuel cells
نویسندگان [English]
- F Yadollahi Farsani
- M Jafari
- E Shahsavari
- H Shakeripour
- H Salamati
Department of Physics, Isfahan University of Technology, Isfahan, Iran
چکیده [English]
The aim of this study is to investigate the properties of the La0.6Sr0.4Fe0.8Mn0.2O3-δ (LSFM)compound as cathode of intermediate temperature solid oxide fuel cells. The LSFM compound was synthesized by the sol-gel process. Thestructural, electrical and electrochemical properties of LSFMwere tested via X-ray diffraction (XRD), scanning electron microscopy (SEM), high temperature four-probe resistivity measurement (HTRM) and electrochemical impedance spectroscopy (EIS). The X-ray pattern showed that sample had a Rhombohedra structure and space group symmetry of LSFM is R-3c; also, the LSFM had good chemical compatibility with YSZ electrolyte. The conductivity of the sample was increased with raising the temperature. The maximum electrical conductivities for the LSFM compound were equal to 3.64 S.cm-1 in air at 739 ℃. The cathode area specific resistance of LSFM was 1.69, 1.01, 0.63, 0.52, and 0.45 Ω cm2 at 600, 650, 700, 750, and 800 ℃, respectively
کلیدواژهها [English]
- solid oxide fuel cell
- cathode
- electrical conductivity
- area specific resistance
- K Huang and J B Goodenough, “Solid oxide fuel cell technology: principles, performance and operations”. Elsevier, (2009).
- T Suzuki, M Awano, P Jasinski, V Petrovsky, and H U Anderson. Solid State Ionics 177 19-25 (2006) 2071.
- S C Singhal, "Solid oxide fuel cells: status, challenges and opportunities" In Advances in Science and Technology, Trans Tech Publications. 45 (2006) 1837.
- M Rafique, H Nawaz, M S Rafique, M B Tahir, G Nabi, and N R Khalid, International Journal of Energy Research 43 7 (2019) 2423.
- S A M Ali, M Anwar, N A Baharuddin, M R Somalu, and A Muchtar, Journal of Solid State Electrochemistry 22, 1 (2018) 263.
- M Jafari, H Salamati, M Zhiani, and E Shahsavari, International Journal of Hydrogen Energy 44, 3 (2019) 1953.
- S Mekhilef, R Saidur, and A Safari. Renewable and Sustainable Energy Reviews 16, 1 (2012) 981.
- R M Ormerod, Chemical Society Reviews 32 1 (2003) 17.
- F Zhao and A V Virkar, Journal of power sources 141 1 (2005) 79.
10. M Ni, M K H Leung, and D YC Leung, Energy Conversion and Management 48 5 (2007) 1525.
11. K H Fri, "Direct generation of electricity". Academic Press, (1965).
12. J Laramie, D Andrew. "Fuel cell systems explained". John Wiley and Sons, New York (2003).
13. S C Singhal. Mrs Bulletin 25, 3 (2000) 16.
14. M V Ananyev, A S Farlenkov, V A Eremin, and E Kh Kurumchin, International Journal of Hydrogen Energy 43, 2 (2018) 951.
15. Z Shao ana S M Haile. "A high-performance cathode for the next generation of solid-oxide fuel cells", Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011) 255.
16. M Petitjean, G Caboche, E Siebert, L Dessemond, L C Dufour, Journal of the European Ceramic Society 25, 12 (2005) 2651.
17. W Zhou, R Ran, and Z Shao. Journal of Power Sources 192, 2 (2009) 231.
18. J A Kilner and M Burriel. Annual Review of Materials Research 44 (2014) 365.
19. M B Philips, N M Sommes, O Yamamoto. Solid State Ionics 123 (1999) 131.
20. Y Takeda, Y Sakaki, T Ichikawa, N Imanishi, O Yamamoto, M Moli, N Mori, and T Abe, Solid State Ionics 72 (1994) 257.
21. ز س طلائی، ه سلامتی، "ساخت و بررسی خواص ساختاری و الکتروشیمیایی کاتدهای بر پایة باریوم (پیلسوختی اکسید جامد)"، اولین کنفرانس ملی هیدروژن و پیلسوختی، (1387).
22. Ch Sun, H Rob, and R Justin, Journal of Solid State Electrochemistry 14, 7 (2010) 1125.
23. L W Tai, M M Nasrallah, H U Anderson, D M Sparlin, and S R Sehlin, Solid State Ionics 76 3-4 (1995) 273.
24. L W Tai, M M Nasrallah, H U Anderson, D M Sparlin, and S R Sehlin, Solid State Ionics 76 3-4 (1995) 259.
25. A Mroziński, S Molin, J Karczewski, T Miruszewski, and P Jasiński, International Journal of Hydrogen Energy 44, 3 (2019) 1827.
26. L Kindermann, D Das, D Bahadur, R Wei, H Nickel, and K Hilpert, Journal of the American Ceramic Society 80, 4 (1997) 909.
27. X D Zhou, J B Yang, E C Thomsen, Q Cai, B J Scarfino, Z Nie, G W Coffey, W J James, W B Yelon, H U Anderson, and L R Pederson, Journal of the Electrochemical Society 153, 12 (2006) J133.
28. L Kindermann, D Das, H Nickel, and K Hilpert, Solid State Ionics 89 3-4 (1996) 215.
29. Y S Chung, T Kim, T H Shin, H Yoon, S Park, N M Sammes, W B Kim, and J S Chung, Journal of Materials Chemistry A 5,14 (2017) 6437.
30. L Ronghui, D Qingshan, M Wenhui, W Hua, Y Bin, D Yongnian, M Xueju, Journal of Rare Earths 24, 1 (2006) 98.
31. A A Samat, A A Jais, M R Somalu, N Osman, A Muchtar, and K L Lim, Journal of Sol-Gel Science and Technology 86, 3 (2018) 617.
32. A Pakzad, H Salamati, P Kameli, and Z Talaei, International Journal of Hydrogen Energy 35, 17 (2010) 9398.
33. Z S Talaei, H Salamati, and A Pakzad, International Journal of Hydrogen Energy 35, 17 (2010) 9401.
34. A Zomorrodian, H Salamati, Z Lu, X Chen, N Wu, A Ignatiev. International Journal of Hydrogen Energy 35, 22 (2010) 12443.
35. F Mauvy, J M Bassat, E Boehm, P Dordor, J C Grenier, and J P Loup. Journal of the European Ceramic Society 24, 6 (2004) 1265.
36. A Mineshige, M Kobune, S Fujii, Z Ogumi, M Inaba, T Yao, K. Kikuchi. Journal of Solid State Chemistry 142, 2 (1999) 374.
37. K P Padmasree, Ke Yu Lai, A F Fuentes, and A Manthiram, International Journal of Hydrogen Energy 44, 3 (2019) 1896.
38. R A Souza, J A Kilner, J F Walker, Materials Letters 43, 1-2 (2000) 43.
39. J A Lane, S J Benson, D Waller, and J A Kilner. Solid State Ionics 121, 1-4 (1999) 201.
40. I Yasuda, K Ogasawara, M Hishinuma, T Kawada, and M Dokiyab, Solid State Ionics 86 (1996) 1197.
41. N O Vitoriano, I R d Larramendi, I G d Muro, J I R d Larramendi, and T Rojo, Materials Research Bulletin 45,10 (2010) 1513.
42. E Pikalova, A Kolchugin, E Filonova, N Bogdanovich, S Pikalov, M Ananyev, N Molchanova, and A Farlenkov, Solid State Ionics 319 (2018) 130.
43. ن اژنگ، پایاننامة کارشناسی ارشد، دانشکدة فیزیک، دانشگاه صنعتی اصفهان (1396).
44. م ت امیری، پایاننامة کارشناسی ارشد، دانشکدة فیزیک، دانشگاه صنعتی اصفهان (1392).
م اخوان، پایاننامة کارشناسی ارشد، دانشکدة فیزیک، دانشگاه صنعتی اصفهان (1396).