نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. گروه شیمی، بخش علوم پایه، دانشگاه پیام نور، تهران

2 2. گروه مهندسی شیمی، دانشکدة فنی مهندسی، دانشگاه اردکان، اردکان

چکیده

در این مقاله، پایداری و خواص ساختاری و الکترونی نانو‌ خوشه‌های Gen و EuGen-1 با 20 و 15، 12-2=n با استفاده از محاسبات کوانتومی با بستة نرم‌افزاری FHI-aims بر پایة نظریة تابعی چگالی، بررسی شده‌اند، سپس پایدارترین ساختار نانو خوشه‌های خالص ژرمانیم و ناخالص آن با یوروپیم برای بررسی اولین انرژی یونش با استفاده از روش برهم‌کنش پیکربندی خوشه‌های تقارن سازگار انتخاب شد. با بررسی انرژی اتصال برای ساختار‌های مختلف هر نانو خوشه، مشخص شد که با افزایش اندازة نانو خوشه، پایداری سیستم به طور کلی افزایش می‌یابد و پایدارترین ساختارهای نانو خوشه‌های EuGen به جز 11=n، از جانشین شدن یک اتم Eu به جای یک اتم ژرمانیم در پایدارترین ساختارهای Gen+1 به ‌دست می‌آید، همچنین در اینجا، شکاف انرژی و اختلاف انرژی دوم (E2∆) برای نانو خوشه‌های پایدار خالص و آلیاژ شده، محاسبه شد. بررسی انرژی اولین یونش و اختلاف انرژی دوم تأیید می‌کند که خوشه‌های 7 و 10 اتمی ژرمانیم خالص و همچنین 8EuGe و 10EuGe از خوشه‌های ناخالص، پایدارترین نانو خوشه‌ها هستند.

کلیدواژه‌ها

عنوان مقاله [English]

Structural and electronic properties of Gen and EuGen-1 nanoclusters: A full potential DFT study

نویسندگان [English]

  • F Bamdadi 1
  • ّF Abyar 2
  • R Behjatmanesh-Ardakani 1

1 1. Department of Chemistry, Payame Noor University, Tehran, Iran

2 2. Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran

چکیده [English]

In this work, the stability, structure and electronic properties of the nanoclusters of germanium (Gen) and europium atom doped germanium clusters (EuGen-1) with n=2 to 12, 15 and 20 were investigated. First, the stability of nanoclusters such as Gen and EuGen-1 was addressed using FHI-aims as a software package based on the density functional theory. Then the lowest-energy structures were selected for calculating  the first vertical ionization with the symmetry adapted cluster-configuration interaction General-R (SAC-CI-General-R) method. The results of this research show that there is a good agreement between calculation and experiment ionization potential for Gen nanoclusters. Generally, the analyses of binding energies show that increasing the size of nanoclusters leads to more stability for nanoclusters. The most stable nanoclusters for EuGen can be created with exchanging the Eu atom in the most stable Gen+1 nanoclusters, but there is an exception for n=11 case. Here,  the second difference in energy (∆2E) and gap energy are computed for the stable nanoclusters. The results of ionization energy and second difference in energy confirm that Ge7 and Ge10 also EuGe8 and EuGe10 have the most stability.

کلیدواژه‌ها [English]

  • germanium nanoclusters
  • fhi-aims
  • full potential
  • first ionization energy
  • second difference in energy
  • gap energy
Y Kamata, Mater.Today 11 (2008) 30.
2. R Pillarisetty, Nature 479 (2011) 324.
3. W Qin, W C Lu, Q J Zang, L Z Zhao, G J Chen, C Z Wang, and K M Ho, J. Chem. Phys. 132 (2010) 214509.
4. Y Y Jin, S J Lu, A Hermann, X Y Kuang, C Zhang, C Z Lu, H G Xu, and W J Zheng, Sci. Rep. 6 (2016) 30116.
5. J Wang, G Wang and J Zhao, Phys. Rev. B 64 (2001) 205411.
6. G R Burton, C Xu, C C Arnold, and D M Neumark, J. Chem. Phys. 104 (1996) 2757.
7. L Wang and J Zhao, J. Chem. Phys. 128 (2008) 024302.
8. X J Deng, X Y Kong, H G Xu, X L Xu, G Feng, and W J Zheng, J. Phys. Chem. C. 119 (2015) 11048.
9. S J Lu, L R Hu, X L Xu, H G Xu, H Chen, and W J Zheng, Phys. Chem. Chem. Phys. 18 (2016) 20321.
10. G Caroena, W V M Machado, J F Justo, and L V C Assal, J. Appl. Phys. 102 (2013) 062101.
11. X Q Liang, X J Deng, S J Lu, H G Xu, X M Huang, X L Xu, J J Zhao, and W J Zheng, J. Phys. Chem. C. 121 (2017) 7037.
12. S Bulusu, S Yoo and X C Zeng, J. Phys. Chem.122 (2005) 164305.

13. X Xie, D Hao, Y Liu, and J Yang, Compu. Theor. Chem. 1 (2015) 1074.


14. D Bandyopadhyay and P Sen, J. Phys. Chem. A 114 (2010) 1835.


15. G Zhao, J M Sun, Y Z Gu, and Y X Wang, J. Chem. Phys. 131 (2009) 114312
16. W Qin, W C Lu, L H Xia, L Z Zhao, Q J Zang, C Z Wang, and K M Ho, AIP Adv. 5 (2015) 67159.
17. M Kumar, N Bhattacharyya and D Bandyopadhyay, J. Mol Model. 18 (2012) 405.
18. SAC-CI website: http://www.sbchem.kyoto-u.ac.jp/nakatsuji-lab/sacci.html
19. V Blum, M Scheffler, R Gehrke, F Hanke, P Havu, X Ren, and K Reuter, The Fritz Haber Institute ab initio molecular simulation package (FHIaims). 2009, http://www.fhi-berlin.mpg.de/aims.
20. G Kohanoff, “Electronic structure calculation for solid and molecules: theory and computational Methodes”, Canada, Cambridge University Press, (2006).
21. J Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
22. B Hammer, Phys. Rev. B.59 (1999) 7414.
23. D Becke, Phys. Rev. A. 38 (1988) 3098.
24. D R Hamann, M Schluter, and C Chiang, Phys. Rev. Lett. 43 (1979) 1494.
25. J M Hunter, J L Fye, M F Jarrold, and J E Bower, Phys. Rev. Lett. 73 (1993) 2063.
26. H Nakatsuji, J. Chem. Phys. 83 (1985) 713.
27. M Ehara and H Nakatsuji, Chem. Phys. Lett. 282 (1998) 347.
28. H Nakatsuji, M Ehara, M H Palmer, and M F Guest, J. Chem. Phys. 97 (1992) 347.
29. H Nakatsuji and M Ehara. J Chem Phys. 101 (1994) 7658.
30. H Nakatsuji, J Hasegawa and M Hada, J. Chem Phys. 104 (1996) 2321.
31. K A Peterson and K G Dyall, “Computational Methods in Lanthanide and Actinide Chemistry, Chapter 8: Gaussian Basis Sets for Lanthanide and Actinide Elements.: Strategies forTheir Development and Use”, Wiley, New York (2015) 195.
32. A Bergner, M Dolg, W Kuechle, H Stoll, and H Preuss, Mol. Phys. 80 (1993) 1431.
33. M Kaupp, PVR Schleyer, H Stoll and H Preuss, J. Chem. Phys.94 (1991) 1360.
34. M Dolg, H Stoll, H Preuss, and R M Pitzer, J. Phys. Chem. 97 (1993) 5852.
35. M J Frisch et. al. “Gaussian 09, Revision C.01, Gaussian, Inc.”, Wallingford CT, (2010).
36. A A Shvartsburg, B Liu, Z Y Lu, C Z Wang, M F Jarrold, and K M Ho, Phys. Rev. Lett. 83 (1999) 2167.
37. S Ogut, J R Chelikowsky, Phys. Rev. B. 55 (1997) 4914
38. Z Y Lu, C Z Wang, K M Ho, Phys. Rev. B. 61 (2000) 2329.
39. J Donohue, “Structures of the Elements”, Wiley: New York, 7 (1974).
40. J E Kingcade, H M Nagarathnanaik, I Shim, and K A Gingerich, J. Phys. Chem. 90 (1986) 2830.
41. K A Gingerich, M S Baba, R W Schmude, J E Kingcade, J.Chem. Phys. 262 (2000) 65.
42. K A Gingerich, R W Schmude, M S Baba, and G Meloni, J. Chem. Phys 112 (2000) 7443.
43. K Raghavachari and C M Rohlfing, J. Chem. Phys. 89 (1988) 2219.
44. A Bahel and M V Ramakrishna, Phys. Rev. B. 51 (1995) 13849.
45. Q L Zhang, Y Liu, R F Curl, F F Tittel, and R E Smalley, J. Chem. Phys. 88 (1988) 1670.
46. O Cheshnovsky, S H Yang, C L Pettiette, M J Craycraft, Y Liu, and R E Smalley, Chem. Phys. Lett. 138 (1987) 119.
47. Y Negishi, H Kawamata, F Hayakawa, A Nakajima, and K Kaya, Chem. Phys. Lett. 294 (1998) 370.
48. J Wang, M Yang, G Wang, and J Zhao, Chem. Phys. Lett. 367 (2003) 448.

تحت نظارت وف ایرانی