نوع مقاله: مقاله پژوهشی

نویسندگان

1 1. گروه فیزیک، دانشگاه جهرم، جهرم

2 2. گروه فیزیک، دانشکدة علوم، دانشگاه یاسوج، یاسوج

چکیده

در این مقاله، گرمای ویژة یک گرافن تک­لایه­ای در حضور اثر پولارون بررسی می­شود. بدین منظور، در ابتدا الکترونی را در نظر می­گیریم که با یک فونون آکوستیکی در سطح گرافن با ناخالصی کولنی قرار دارد. سپس، حالت پایة انرژی این پولارون را با استفاده از روش وردشی و تبدیل یکانی به دست می­آوریم. برای محاسبۀ گرمای ویژه در مواد مختلف نظیر سیلیسیم کاربید، اکسید هافنیم، بورن نیترید و اکسید سیلیس از ترمودینامیک نافزونور استفاده می­کنیم. تغییرات گرمای ویژه را با پارامتر کولنی، میدان مغناطیسی، دما و بار الکتریکی برای این مواد مورد مطالعه قرار می­دهیم.
 

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of specific heat in the monolayer graphene

نویسندگان [English]

  • H R Rastegar Sedehi 1
  • R Khordar 2

1 1. Department of Physics, Jahrom University, Jahrom, Iran.

2 2. Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran.

چکیده [English]

In this paper, we have investigated the specific heat of the monolayer graphene under the polaron effect. For this purpose, we have first considered an electron coupled to the longitudinal acoustic (LA) phonon on the surface of the graphene with Coulomb impurity. Then, we have obtained the ground state energy of the polaron by employing the variational method and unitary transformation. We have used non-extensive thermodynamics to calculate specific heat different substrates like SiC, HfO2, h-BN, and SiO2. The specific heat variation with Coulomb bound parameter, magnetic field, temperature, and charge is then studied for these different substances.
 
 

کلیدواژه‌ها [English]

  • graphene
  • Specific Heat
  • bound polaron
  • Tsallis entropy

. J Yan, Y Zhang, P Kim, and A Pinczuk, Phys. Rev. Lett. 98 (2007) 166802.

2. M Wang, D Galpaya, Z B Lai, Y Xu, and C Yan, Int. J. Smart Nano Mater. 5 (2014) 123.

3. D M Basko, Phys. Rev. B 78 (2008) 125418.

4. S Acharya and R Sharma Indian J. Phys 90 (2016) 543.

5. M Calandra and F Mauri, Phys. Rev. B 76 (2007) 205411.

6. Y J Kim, G Y Bae, S Chun, and W Park, J. Nanosci. Nanotechnol 16 (2016) 2769.

7. S Won, Nanoscale 6 (2014) 6057.

8. W Lee, S Suzuki, and M Miyayama, Nanomaterials 4 (2014) 599.

 9. J W Rhim, and K Moon, Phys. Rev. B 84 (2011) 035402.

10. J P Hague, Phys. Rev. B 86 (2012) 064302.

11. G Giovannetti, P A Khomyakov, G Brocks, P J Kelly, J van den Brink, Phys. Rev. B 76 (2007) 073103.

12. C L Kane and E J Mele, Phys. Rev. Lett 95 (2005) 146802.

13. C L Kane and E J Mele, Phys. Rev. Lett 95 (2005) 226801.

14. B XuJ YinY D XiaX G WanK Jiang, and Z G Liu, Appl. Phys. Lett 96 (2010) 163102.

15. G Lee, and K Cho, Phys. Rev. B 79 (2009) 165440.

16. Z W Wang, L Liu, and Z Q Li, Appl. Phys. Lett 106 (2015) 101601.

17. I T Lin, and J M Liu, Appl. Phys. Lett 103 (2013) 081606.

18. V M Pereira, J Nilsson, and A H C Neto, Phys. Rev. Lett 99 (2007) 166802.

19. B Hunt, J D S Yamagishi, A F Young, M Yankowitz, B J LeRoy, K Watanabe, T Taniguchi, P Moon, M Koshino, P J Herrero, and R C Ashoori, Science 340 (2013) 1427.

20. J P Hague, Phys. Rev. B 84 (2011) 155438.

21. M Kindermann, B Uchoa, and D L Mille, Phys. Rev. B 86 (2012) 115415.

22. Z H Ding, Y Zhao, and J L Xiao, Superlatt. Microstruct. 97 (2016) 298.

23. D M Basko, Phys. Rev. B 78 (2008) 125418.

24. T Stauber, N M R Peres, and A H Castro Neto, Phys. Rev. B 78 (2008) 085418.

25. B Kandemir, and A Mogulkoc, Solid State Commun. 177 (2014) 80.

26. D M Basko, Phys. Rev. B 76 (2007) 081405.

27. A Mogulkoc, M Modarresi, and B S Kandemir, Eur. Phys. J. B 88 (2015) 1.

28. M Modarresi, A Mogulkoc, M R Roknabadi, and N Shahtahmasebi, Physica E 66 (2015) 303.

29. K S Yi, D Kim, K S Park, and J J Quinn, Physica E 40 (2008) 1715.

30. M K Li, S J Lee, and T W Kang, Curr. Appl. Phys. 9 (2009) 769.

31. R Nasir, M A Khan, M Tahir, and K Sabeeh, J. Phys. Condens. Matter 22 (2010) 25503.

32. V Santos, R V Maluf, and C A S Almeida, Ann. Phys. NY 349 (2014) 402.

33. A R Wright, J Liu, Z Ma, Z Zeng, W Xu, and C Zhang, Microelectronics Journal 40 (2008) 716.

34. A Boumali, Phys. Scr 90 (2015) 045702.

35. C Tsallis, J. Stat. Phys 52 (1988) 479.

36. C Tsallis, “Introduction to Nonextensive Statistical Mechanics”, Springer: New York, USA (2009).

37. R Khordad, and H R Rastegar Sedehi Superlattice. Microst. 101 (2017) 559.

38. K Tarmissi, and A B Hamza, Expert Syst. Appl 36 (2009) 9409.

39. M Khader, and A B Hamza, Expert Syst. Appl 39 (2012) 5548.

40. J J Hopfield, and A V M Herz, Proc. Natl. Acad. Sci. 92 (1995) 6655.

41. R Khordad, and H R Rastegar Sedehi, Indian J. Phys 91 (2017) 825.

42. E P da Silva, C Tsallis, and E M F Curado, Physica A 199 (1993) 137.

43. J L Xiao, Superlatt. Microstruc 90 (2016) 308.

44. Y Sun, Z H Ding, and J L Xiao, J. Low. Temp. Phys 177 (2014) 151.

45. R Khordad, Contin. Mech. Thermodyn 28 (2016) 947.

46. R Khordad, and H R Rastegar Sedehi, J. Low. Temp. Phys. 190 (2018) 200.

47. R Khordad, Solid State Commun. 269 (2017) 118.

48. R Khordad, and H R Rastegar Sedehi, Indian J. Phys 92 (2018) 979.

49. T D Lee, F E Low, and D pines, Phys. Rev. 90 (1953) 297. 

50. C Tsallis, R S Mendes, and A R Plastino, Physica A 261 (1998) 534.

51. Z W Wang, L Liu, and Z Q Li, Appl. Phys. Lett. 106 (2015) 101601..

تحت نظارت وف بومی