نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکدة فیزیک، دانشگاه تحصیلات تکمیلی علوم پایة زنجان، زنجان‏ ‏ مرکز پژوهشی اپتیک، دانشگاه تحصیلات تکمیلی علوم پایة زنجان، زنجان

2 دانشکدة فیزیک، دانشگاه تحصیلات تکمیلی علوم پایة زنجان، زنجان‏

چکیده

در این پژوهش به مطالعة تونل‌زنی یک اتم در داخل یک چاه پتانسیل دوتایی پرداخته‌ایم. اتم در برهم‌کنش با یک یون است که در یک چاه هماهنگ ساده در مرکز ‏چاه دوتایی قرار دارد. تونل‌زنی اتم را می‌توان با استفاده از اسپین و یا حالت‌های فضایی یون کنترل کرد. با در نظر گرفتن یک پتانسیل مدل نشان داده‌ایم که می‌توان ‏یک حالت درهم‌تنیده بین حالت فضایی یون و تابع موج اتم تولید کرد. با استفاده از روش کنترل بهینه به بررسی سریع‌ترین فرایند ممکن برای دستیابی به این ‏حالت درهم‌تنیده پرداخته‌ایم. این دستگاه می‌تواند به عنوان کیوبیت در کامپیوترهای کوانتومی مورد استفاده قرار گیرد.
 

کلیدواژه‌ها

عنوان مقاله [English]

Quantum speed limit in producing atom-ion entanglement in Josephson junction

نویسندگان [English]

  • Sh Saeidian 1
  • M Rajabi Ebgha 2

1 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran. Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

2 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

چکیده [English]

In this work, we have studied the tunneling of a single atom in a double-well. The atom is interacting with a single ion in a simple harmonic trap placed in the center of the double-well. The tunneling of the atom is controlled by the spin and/or motional state of the ion. Considering a model potential, we have shown that it is possible to generate an entangled state between the spatial state of the ion and the atomic wavefunction.  By employing the optimal control method,  the quantum speed limit of generating this entangled process has been explored. This system can be used as qubit in quantum computers.

کلیدواژه‌ها [English]

  • atom-ion entanglement
  • chopped random basis algorithm
  • optimal control
  • quantum speed limit
  1. ‎ P Pfeifer, Phys. Rev. Lett. 70 (1993) 3365.

  2. ‎ Bhattacharyya, K. J. Phys. A: Math. Gen. 16 (1983) ‎2993.

  3. N Margolus and L B. Levitin, Physics D 120 (1998) ‎188.

  4. S Deffner and S Camplell, Journal of Physics A: Mathematical and Theoretical 50 (2017) 453001.

  5. S van Frank, A Negretti, T Berrada, R Bcker, S Montangero, J F Schaff, T Schumm, T Calarco, and J Schmiedmayer, Nature  ‎Communications 5 (2014) 4009.‎

  6. S van Frank, M Bonneau, J Schmiedmayer, S Hild, C Gross, M Cheneau, I Bloch, T Pichler, A Negretti, T Calarco, and S ‎Montangero, Scientific Reports 6 (2016) 34187.‎

  7. D C Brody, Journal of Physics A: Mathematical and General 36 (2003) 5587. ‎

  8. ‎ V F Krotov, “Global Methods in Optimal Control Theory”, Mercel Dekker, New York (1996).‎

  9. ‎I Walmsley, and H Rabitz, Physics Today 56 (2003) 43.


10. ‎ I. Bloch, J. Dalibard, and S. Nascimbne, Nature Physics 8 (2012) 267.‎


11. ‎ M Lewenstein, A Sanpera, V Ahu_nger, B Damski, A Sen(De), and U Sen, Advances in Physics 56 (2007) 243.‎


12. ‎ N Goldman, G Juzelinas, P hberg, and I B Spielman, Reports on Progress in Physics 77 (2014) 126401.‎


13. ‎ D Leibfried, R Blatt, C Monroe, and D Wineland, Rev. Mod. Phys. 75 (2003) 281.‎


14. ‎ H Häffner, C Roos, and R Blatt, Physics Reports 469 (2008) 155.‎


15. ‎R Blatt and C F Roos, Nature Physics 8 (2012) 277.‎


16. ‎R Côfé, V. Kharchenko, and M. D. Lukin, Phys. Rev. Lett. 89 (2002) 093001.‎


17. ‎ R Côfé, Phys. Rev. Lett. 85 (2000) 5316.‎


18. R. Côfé and A. Dalgarno, Phys. Rev. A 62 (2000) 012709.‎


19. ‎ Z Idziaszek, T Calarco, and P Zoller, Phys. Rev. A 76 (2007) 033409.‎


20. ‎ J Bauer, C Salomon, and E Demler, Phys. Rev. Lett. 111 (2013) 215304.‎


21. ‎ J M Schurer, A Negretti, and P Schmelcher, New Journal of Physics 17 (2015) 083024.‎


22. ‎W W Smith, O P Makarov, and J Lin, Journal of Modern Optics 52 (2005) 2253.‎


23. ‎ F H J Hall and S Willitsch, Phys. Rev. Lett. 109 (2012) 233202.‎


24. ‎ S Willitsch, M T Bell, A D Gingell, and T P Softley, Phys. Chem. Chem. Phys. 10 (2008) 7200.‎


25. ‎ K Ravi, S Lee, A Sharma, G Werth, and S Rangwala, Nature Communications 3 (2012) 1126.‎


26. ‎C Zipkes, S Palzer, L Ratschbacher, C Sias, and M Kohl, Phys. Rev. Lett. 105 (2010) 133201.‎


27. ‎ F H J Hall, M Aymar, N Bouloufa-Maafa, O Dulieu, and S Willitsch, Phys. Rev. Lett. 107 (2011) 243202.‎


28. ‎ L Ratschbacher, C Zipkes, C Sias, and M Khl, Nature Physics 8 (2012) 649652.‎


29. ‎ A Rakshit and B Deb, Phys. Rev. A 83 (2011) 022703.‎


30. ‎ A Härter, A Krükow, A Brunner, W Schnitzler, S Schmid, and J H Denschlag, Phys. Rev. Lett. 109 (2012) 123201.‎


31. ‎J Deiglmayr, A Göritz, T Best, M Weidemüller, and R Wester, Phys. Rev. A 86 (2012) 043438.‎


32. ‎ A T Grier, M Cetina, F Oručević, and V Vuletić, Phys. Rev. Lett. 102 (2009) 223201.‎


33. ‎ W W Smith, D S Goodman, I Sivarajah, J E Wells, S Banerjee, R Côté, H H Michels, J A Mongtomery, and F A Narducci, ‎Applied Physics B 114 (2014) 75.‎


34. ‎ S Schmid, A Harter, and J H Denschlag, Phys. Rev. Lett. 105 (2010) 133202.‎


35. ‎ C Zipkes, L Ratschbacher, S Palzer, C Sias, and M Khl, Journal of Physics: Conference Series 264 (2011) 012019.‎


36. ‎ S Haze, S Hata, M Fujinaga, and T Mukaiyama, Phys. Rev. A 87 (2013) 052715.‎


37. ‎ R Gerritsma, A Negretti, H Doerk, Z Idziaszek, T Calarco, and F Schmidt-Kaler, Phys. Rev. Lett. 109 (2012) 080402.‎


38. ‎ J Joger, A Negretti, and R Gerritsma, Phys. Rev. A 89 (2014) 063621.‎


39. ‎ B D Josephson, Physics Letters 1 (1962) 251.‎


40. ‎ B D Josephson, Reviews of Modern Physics 36 (1964) 216.‎


41. ‎M H Devoret, and J M Martinis, Quantum Information Processing 3 (2004) 163.‎


42. ‎ P Krantz, M Kyaergaard, F Yan, T P Orlanb, S Gustavsson, and W D Oliver, Applied Physics 6 (2019) 021318.‎


43. ‎ T Schweigler, et al., ‎Nature 545 (2017) 323.‎


44. ‎ G Valtolina, et al., Science 350 (2015) 1505.‎


45. ‎ A Burchianti, et al., Phys. Rev. Lett. ‎‎120 (2018) 025302.‎


46. ‎ M Pigneur, et al., Phys. Rev. Lett. 120 (2018) 173601.‎


47. ‎G Niccoli and J Teschner, Journal of Statistical Mechanics: Theory and Experiment (2010) 09014.‎


48. ‎ J M. Schurer, R Gerritsma, P Schmelcher, and A Negretti, Phys. Rev. A 93 (2016) 063602.‎


49. ‎ A Smerzi, S Fantoni, S Giovanazzi, and S R Shenoy, Phys. Rev. Lett. 79 (1997) 4950.‎


50. ‎ H Doerk, Z Idziaszek, and T Calarco, Phys. Rev. A 81 (2010) 012708.‎


51. T Secker, R Gerritsma, A W. Glaetzle, and A Negretti, Phys. Rev. A 94 (2016) 013420.‎


52. ‎ U Bissbort, et al., Phys. Rev. Lett. ‎‎111 (2013) 080501.‎


53. ‎ A Negretti, R Gerritsma, Z Idziaszek, F Schmidt-Kaler, and T Calarco, Phys. Rev. B 90 (2014) 155426.‎


54. ‎ D González-Cuadra, P R Grzybowski, A Dauphin, and M Lewenstein, Phys. Rev. Lett. 121 (2018) 090402.‎


55. ‎ A S Dehkharghani, E Rico, N T Zinner, and A Negretti, Phys. Rev. A 96 (2017) 043611.‎


56. ‎ M R Ebgha, S Saeidian, P Schmelcher, and A Negreti, Phys. Rev. A 100 (2019) 033616.‎


57. ‎ B R Johnson, J. Chem. Phys. 69 (1987) 4687 ‎‏.‏


58. ‎ M J Seaton, Rep. Prog. Phys. 46 (1983) 167.‎


59. ‎ J M Schurer, P. Schmelcher, and A. Negretti, Phys. Rev. A 90 (2014) 033601.‎


60. ‎ S Lloyd, and S Montangero, Phys. Rev. Lett. 113 (2014) 010502.‎


61. ‎‎‏ ‏M Albiez, R Gati, J F ̈olling, S Hunsmann, M Cristiani, and M K Oberthaler, Phys. Rev. Lett. 95 (2005) 010402 ‎‏.‏


62. ‏R Gati and M K Oberthaler, J. Phys. B 40 (2007) R61‎‏.‏


63. S Levy, E Lahoud, I Shomroni, and J Steinhauer, Nature, 449 (2007) 579 ‎‏.‏


64. Atom Chips, edited by J. Reichel and V. Vuletić Wiley-VCH‏,‏ Weinheim, (2011).‎


65. ‎ C Schneider, M Enderlein, T Huber, and T Schaetz, Nature Photonics 4 (2010) 772 ‎‏.‏


66. M Enderlein, T Huber, C Schneider, and T Schaetz, Phys‏.‏‎ Rev. Lett. 109 (2012) 233004 ‎‏‏.

تحت نظارت وف ایرانی