نوع مقاله : مقاله پژوهشی
نویسندگان
دانشکدة فیزیک، دانشگاه تهران
چکیده
ما مدلی برای بررسی وابستگی ساختار مرز تهاجم در محیط دوبعدی به مؤلفههای مختلف یک محیط سلولی طراحی کردیم. به این منظور ما از معادلة غیرخطی واکنش- پخش، موسوم به معادلة فیشر برای توصیف تحول جمعیت سلولهای تومور استفاده کردیم. ما تلاش کردیم تا نقش افت و خیز در سختی محیط و همبستگیهای فضایی میان این افتوخیزها را که در مطالعات تجربی مشاهده شدهاند بر مرز مطالعه کنیم. نتایج ما نشان دادند که سه مؤلفۀ اساسی ساختار مرز را کنترل میکنند: شدت افت و خیزها، همبستگیهای فضایی میان آنها و R/D که در آن R آهنگ تکثیر و D ضریب پخش سلولها است. ما همچنین با تحلیل مقیاسی مرز تهاجم در معادلۀ فیشر نشان دادیم که بر خلاف مطالعات گذشته، مرز تهاجم تومورها و کلونیهای سلولهای سرطانی از مدلهای شناخته شدة رشد سطح مانند کاردر- پاریزی-ژانگ پیروی نمیکنند.
کلیدواژهها
عنوان مقاله [English]
Investigation of the invasion front in heterogeneous environments to study the geometry of tumor border
نویسندگان [English]
- Y Azimzade
- A A Saberi
Department of Physics, Faculty of Physics, Tehran University, Tehran, Iran
چکیده [English]
We develop a model to study how invasion front depends on the relevant properties of a cellular environment. To do so, we use a nonlinear reaction-diffusion equation, the Fisher equation, to model the population dynamics. Our study is intended to understand how heterogeneity in the cellular environment's stiffness, as well as spatial correlations in its morphology, given that the existence of both has been demonstrated by experiments, affects the properties of the invasion front. It is demonstrated that three important factors affect the properties of the front; these are the spatial distribution of the local diffusion coefficients, the correlations between them, and R/D, the ratio of the cells' duplication rate R to the cells' average diffusion coefficient D. Analyzing the scaling properties of the Fisher equation invasion front, we show that , contrary to several previous claims, invasion fronts, including those of tumors and cancerous cells colonies, cannot be described by the well-known model of kinetic growth, such as the Kardar-Parisi-Zhang equation.
کلیدواژهها [English]
- invasion front
- stochastic fisher's equation
- tissue stiffness
- tumors
- K S Korolev, J B Xavier, and J Gore, Nature Reviews Cancer 14, 5 (2014) 371.
- J D Murray, “Mathematical biology: I. An introduction” Springer Science & Business Media. (2007).
- D L DeAngelis and V Grimm, “Individual-based models in ecology after four decades.” F1000prime reports 6 (2014)
- A Morozov and J C Poggiale, Ecological Complexity 10 (2012) 1.
- R A Fisher, 1937. Annals of eugenics 7, 4 (1937) 355.
- G Birzu, O Hallatschek, and K S Korolev, Proceedings of the National Academy of Sciences 115, 16 (2018) E3645.
- Y Azimzade, M Sasar, and V M P García, “Environmental Disorder Regulation of Invasion and Genetic Loss”. arXiv preprint arXiv:1908.02532, (2019).
- K M A Yong, Z Li, S D Merajver, and J Fu, Scientific reports 7, 1 (2017) 1.
- A Brú, S Albertos, J L Subiza, J L García-Asenjo, and I Brú, Biophysical journal 85, 5 (2003) 2948.
- M A C Huergo, M A Pasquale, A E Bolzán, A J Arvia, and P H González, Phys. Rev. E 82 (2010) 031903 .
- J Pérez-Beteta, D Molina-García, A Martínez-González, A Henares-Molina, M Amo, B Luque, E Arregui, M Calvo, J M Borrás, J Martino, et al., European Radiology (2018) 1.
- D Wirtz, K Konstantopoulos, and P C Searson, Nature Reviews Cancer 11, 7 (2011) 512.
- M Plodinec, M Loparic, C A Monnier, E C Obermann, R Zanetti-Dallenbach, P Oertle, J T Hyotyla, U Aebi, M Bentires-Alj, R Y Lim, et al., Nature Nanotechnology 7, 11 (2012) 757.
- S Kondo and T Miura, science 329, 5999 (2010) 1616.
- A A Anderson, Math.Med. Biol. 22 (2005) 163.
- P Haridas, C J Penington, J A McGovern, D S McElwain, and M J Simpson, J. Theor. Biol. 423 (2017) 13.
- T H Keitt, Landscape Ecology 15, 5 (2000) 479.
Y. Azimzade, A A. Saberi, and M Sahimi,. 2018. Scientific reports 8, 1 (2018) 1.