نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکدة فیزیک- شیمی، دانشگاه الزهرا، تهران

چکیده

از میان نانومواد دو بعدی، تک‌لایة WS2 با گاف نواری مستقیم و جذب تیز در طول موج 619 نانومتر، افق جدیدی برای کاربری در فوتونیک و الکترواپتیک ایجاد کرده است. در این مقاله در راستای افزایش جذب، به بررسی اثر لایة نازک نقره به عنوان لایة پلاسمونیک روی زیرلایه و اثر لایة میانی و لایة پوشاننده به صورت نظری پرداخته شده است. ویژگی اپتیکی ساختارها با روش ماتریس انتقال، TMM، در ناحیة طول موج مرئی مورد بررسی قرار گرفته است. در طراحی این ساختارها با قرارگیری لایة میانی و لایة نقره در ساختار شامل تک‌لایة WS2، میزان جذب نسبت به حالت معلق از 17% به 57% افزایش یافته است. با تغییرزاویة فرود در طیف وسیعی از زاویۀ جذب بالای 40% دیده می‌شود که چشم‌انداز خوبی برای تحقق کاربری­های مبتنی بر تک­لایة WS2 است.

کلیدواژه‌ها

عنوان مقاله [English]

Enhancement of light absorption in a WS2 monolayer using spacer and Ag plasmonic layers

نویسندگان [English]

  • N Ansari
  • E Mohebbi
  • F Gholami
  • M Anafche

Department of Physics, Alzahra University, Tehran, Iran

چکیده [English]

Among 2D nanomaterials, WS2 monolayers with a direct bandgap and sharp absorption at 619 nm have  opened a new horizon for the use of these materials in photonics and electropopics. In this paper, in order to increase the absorption, the role of Ag thin film as a plasmonic layer on the substrate and also,  the effect  of spacer and cover layers are theoretically investigated. The optical properties of the designed structures are investigated by the transfer matrix method in the visible wavelength region. In the structure consisting of a WS2 monolayer with Ag and spacer layers, the absorption at 619 nm was increased to 57%. Sharp optical absorption as high as 40% for a large range of incidence angles in both polarizations was retained, giving  a good perspective on the realization of WS2 applications

کلیدواژه‌ها [English]

  • absorption
  • plasmonic
  • spacer
  • cover
  • WS2 monolayer

  1. N Huo, J Kang, Z Wei, S S Li, J Li, and S Wei, Advanced Functional Materials 24 (2014) 7025.
  2. Z Yin, H Li, H Li, L Jiang, Y Shi, Y Sun, G Lu, Q Zhang, X Chen, and H Zhang, ACS nano 6 (2011) 74.
  3. D Regatos, B Sepulveda, D Farina, L G Carrascosa, and L M Lechuga, Optics express 19 (2011) 8336.
  4. A Akbari, R N Tait, and P Berini, Optics express 18 (2010) 8505.
  5. O Lopez-Sanchez, D Lembke, M Kayci, A Radenovic, and A Kis, Nature nanotechnology 8 (2013) 497.
  6. N Ansari, and F Ghorbani. JOSA B 35 (2018) 1179.
  7. N Ansari, E Mohebbi, and F Gholami, Journal of Applied Physics 127 (2020) 063101.
  8. N Ansari, E Mohebbi, and F Gholami, Applied Physics B 126 (2020) 3.
  9. W Xiaoyu, J Wang, Z Hu, T Sang, and Y Feng, Applied Physics Express11 (2018) 062601.

10. L Hua, X Gan, D Mao, Y Fan, D Yang, and J Zhao, Optics express25 (2017) 21630.

11. Y Long, H Deng, H Xu, L Shen, W Guo, C Liu, W Huang, W Peng, L Li, H Lin, and C Guo, Optical Materials Express 7 (2017) 100.

12. L Long, Y Yang, H Ye, and L Wang, Journal of Quantitative Spectroscopy and Radiative Transfer 200 (2017) 198.

13. J T Liu, T B Wang, X J Li, and N H Liu, Physical Chemistry Chemical Physics 115 (2014) 193511.

14. G Yi Jia, Q Zhang, Z X Huang, S  Bin Huang, and J Xu, Physical Chemistry Chemical Physics 7, 23 (2017) 109.

  1. 15.  S Jinlin, L Lu, C Qiang, and L Zixue, Journal of Quantitative Spectroscopy & Radiation, 211 (2018) 138.

16. L Jiang-Tao, T Wang, X Li, and N Liu, Journal of Applied Physics 115 (2014) 193511.

17. L Hongju, M Qin, L Wang, X Zhai, R Ren, and J Hu, Optic. Express 25 (2017) 31612.

18. X Jiang, T Wang, S Xiao, X Yan, L Cheng, and Q Zhong, Nanotechnology 29 (2018) 335205.

19. C Jintao, J Wang, G Yang, Y Lu, R Sun, P Yan, and S Gao, Superlattices and Microstructures 110 (2017) 26.

20. J T Liu, N H Liu, J Li, X J Li, and J H Huang, Applied Physics Letter 101 (2012) 052104.

21. G Ghosh, Optics communications 163 (1999) 95.

22. N Sultanova, S Kasarova, and I Nikolov, Acta Physica Polonica A116 (2009) 585.

23. P B Johnson and R W Christy, Phys. Rev. B 6 (1972) 4370.

تحت نظارت وف بومی