نوع مقاله : مقاله مروری

نویسندگان

1 دانشگاه بین المللی امام خمینی (ره)

2 دانشگاه تبریز

3 سازمان انرژی اتمی ایران

چکیده

تابش سینکروترون، از یک نور قطبی و موازی با درخشندگی خیلی زیاد و شدت بالا تشکیل شده است که شامل ­­­گسترۀ وسیعی از طول موج­ها، از فروسرخ تا پرتوهای X پرانرژی است. در این مقاله خلاصه‌ای از کاربرد‌‌­­­‌‌‌های تابش سینکروترون در طیف‌سنجی‌ و تصویربرداری به کمک پرتو X، ارائه شده است. این کاربرد‌ها شامل پراش پرتو X مواد پودری (XRPD)، پراکندگی پرتو ایکس در زوایای بزرگ (WAXS)، پراکندگی پرتو ایکس در زوایای کوچک (SAXS)، فلورسانس پرتو X (XRF)، بازتاب­سنجی پرتو X (XRR)، جذب لبۀ نزدیک ساختار ظریف پرتو X (NEXAFS)، جذب لبۀ نزدیک ساختار پرتو X (XANES)، طیف‌سنجی فوتوالکترونی پرتو X (XPS)، طیف‌سنجی نشری پرتو X (XES) و تصویر‌برداری به کمک پرتو X است. این تکنیک­ها، برای مشخصه­یابی انواع ساختارهای مواد مختلف در اندازه­های میکرو و نانو توانایی بالایی دارند. علاوه بر این، استفاده از این فناوری‌ها مزیت‌هائی مانند صحت بیشتر اندازه­گیری­ها، بهبود نسبت "علامت به نوفه"، تفکیک فضایی بهتر و  سرعت بیشتر جمع آوری داده­ها دارد.

کلیدواژه‌ها

عنوان مقاله [English]

A review of synchrotron X-ray radiation spectroscopy and imaging ‎ ‎

نویسندگان [English]

  • Abolfazl Keshtkar vanashi 1
  • Hossein Ghasemzadeh mohammadi 1
  • Shiravan Afraz 1
  • Saeid Asghari zadeh 2
  • Mohammad Lamei rashti 3
  • Mona Haddad 1

چکیده [English]

Synchrotron radiation is an advanced polarized and collimated light source with high brilliance and intensity. whereas This radiation has a wavelength range of infrared to the highest-energy x-rays. In this article, we provide a summary of application of x-ray spectroscopy with synchrotron radiation to x-ray spectroscopy. Here we discuss ten types of x-ray techniques include X-ray Powder Diffraction(XRPD), Wide Angle X-ray Scattering (WAXS), Small-Angle X-ray Scattering (SAXS), X-ray fluorescence(XRF), X-ray reflectometry (XRR), Near Edge X-ray Absorption Fine Structure (NEXAFS), X-ray Absorption Near Edge Structure (XANES), Photo Electron Spectroscopy (XPS), X-ray Emission Spectroscopy (XES), and x-ray imaging spectroscopy. These techniques have good potential for characterization of various micro- and nano-materials. Furthermore, some advantages of the use of these techniques are as follows: improving signal to noise ratio, better spatial resolution, and improving data acquisition.

کلیدواژه‌ها [English]

  • synchrotron radiation
  • X-ray spectroscopy
  • X-ray imaging‎ ‎
H Cheng, C Lu,  and J Liu, et al., Prog. Nat. Sci. Mater. Int. 27 (2017) 66.
2.   Y F Li, J. Zhao, and Y Qu, et al., Nanomedicine Nanotechnology, Biol. Med. 11 (2015) 1531.
3.   A Bharti, and N Goyal, “Fundamental of Synchrotron Radiations, in Synchrotron Radiation - Useful and Interesting Applications”, IntechOpen (2019).
4.   I Snigireva and A Snigirev, J. Environ. Monit. 8 (2006) 33.
5.   B S Twining, S B Baines, N S Fisher, et al., Anal. Chem. 75 (2003) 3806.
6.   L Bertrand, M Cotte, and M Stampanoni, et al., Phys. Rep. 519 (2012) 51.
7.   J J Socha, T D Förster, and K J Greenlee, Respir. Physiol. Neurobiol. 173 (2010) S65.
8.   J Y Buffiere, E Maire, J Adrien, et al., Proc. Soc. Exp. Mech. Inc. 67 (2010) 289.
9.   P Cloetens, M Pateyron-Salomé, J Y Buffière, et al., J. Appl. Phys. 81 (1997) 5878.
10. A de Pannemaecker, J Y Buffiere, S. Fouvry, et al., Int. J. Fatigue 97 (2017) 56.
11. K Dong, H Markötter, F Sun, et al., ChemSusChem 12 (2019) 261.
12. T Mitsch, Y Krämer, J Feinauer, et al., Materials (Basel). 7 (2014) 4455.
13. M W Westneat, J J Socha, and W K Lee, Annu. Rev. Physiol. 70 (2008) 119.
14. C Chappard, A Basillais, L. Benhamou, et al., Med. Phys. 33 (2006) 3568.
15. O Betz, U Wegst, D Weide, et al., J. Microsc. 227 (2007) 51.
16. V Fernandez, E Buffetaut, E Maire, et al., Microsc. Microanal. 18 (2012) 179.
17. R L Johnston, Metal nanoparticles and nanoalloys, in Frontiers of Nanoscience, Elsevier Ltd (2012) 1.
18. R M Ormerod, Surface Chemistry: Electron Yield Spectroscopy, in Encyclopedia of Materials: Science and Technology, Elsevier (2001) 9006.
19. R Ferrando, Front. Nanosci. 10 (2016) 47.
20. C Garino, E Borfecchia, R Gobetto, et al., Coord. Chem. Rev. 277 (2014) 130.
21. J Kowalska and S Debeer, BBA - Mol. Cell Res. 1853 (2015) 1406.
22. Y Liu, J F Chen, J Bao, et al., ACS Catal. 5 (2015) 3905.
23. R M R Luciana C Juncal, José Avila, Maria Carmen Asensio, and Carlos O. Della Védova, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 180 (2017) 183.
24. A Vairavamurthy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 54 (1998) 2009.
25. B Flemmig, H Modrow, K Heinz Hallmeier, et al., Chem. Phys. 270 (2001) 405.
26. A Dey, S P Jeffrey, M Darensbourg, et al., Inorg. Chem. 46 (2007) 4989.
27. A D Servin, H Castillo-Michel, J A Hernandez-Viezcas, et al., Environ. Sci. Technol. 46 (2012) 7637.
28. S Bordiga, E Groppo, G Agostini, et al., Chem. Rev. 113 (2013) 1736.
29. M Ceotto, L Lo Presti, G Cappelletti, et al., J. Phys. Chem. C 116 (2012) 1764.
30. T Horikawa, N Sakao, J Hayashi, et al., Adsorpt. Sci. Technol. 31 (2013) 135.
31. P Ayala, R Arenal, M Rümmeli, et al., Carbon N. Y. 48 (2010) 575.
32. S Majeed, J Zhao, L Zhang, et al., Nanotechnol. Rev. 2 (2013) 615.
33. C Wang, Y Zhou, L Sun, et al., J. Power Sources 239 (2013) 81.
34. M Glerup, J Steinmetz, D Samaille, et al., Chem. Phys. Lett. 387 (2004) 193.
35. T Tsubota, K Takenaka, N Murakami, et al., J. Power Sources 196 (2011), 10455.
36. K G Latham, G Jambu, S D Joseph, et al., ACS Sustain. Chem. Eng. 2 (2014), 755.
37. K G Latham, M I Simone, W M Dose, et al., Carbon N. Y. 114 (2017), 566.
38. M J Bleda-Martínez, J A Maciá-Agulló, D Lozano-Castelló, et al., Carbon N. Y. 43 (2005), 2677.
39. C Lenardi, P Piseri, V Briois, et al., J. Appl. Phys. 85 (1999) 7159.
40. R McCann, S S Roy, P Papakonstantinou, et al., Diam. Relat. Mater. 14 (2005) 1057.
41. A A Bunaciu, E G UdriŞTioiu, and H Y Aboul-Enein, Crit. Rev. Anal. Chem. 45 (2015) 289.
42. A Sagdeo, P Mondal, A Upadhyay, et al., Solid State Sci. 18 (2013) 1.
43. J Evertsson, F Bertram, F Zhang, et al., Appl. Surf. Sci. 349 (2015) 826.
44. W Wu, W E Wallace, E K Lin, et al., J. Appl. Phys. 87 (2000), 1193.
45. F Bertram, F Zhang, J Evertsson, et al., J. Appl. Phys. 116 (2014), 034902.
46. B M Ocko, J Wang, A Davenport, et al., Phys. Rev. Lett. 65 (1990) 1466.
47. J Bolze M. Ree, H S Youn, et al., Langmuir 17 (2001) 6683.
48. F Zhang, J Evertsson, F Bertram, et al., Electrochim. Acta 241 (2017) 299.
49. L Cristofolini, Curr. Opin. Colloid Interface Sci. 19 (2014), 228.
50. Y Wang, A S Özcan, G Özaydin, et al., Phys. Rev. B 74 (2006), 235304.
51. J Bolze, M Ree, H S Youn, et al., Langmuir 17 (2001) 6683.
52. S Majumdar, J R Peralta-Videa, H Castillo-Michel, et al., Anal. Chim. Acta 755 (2012) 1.
53. G R. and R. T. Lopes , ‎“X-ray fluorescence microtomography in biological applications”, in Computed tomography-special ‎applications,‎ (2011).
54. M West, A T Ellis, P J Potts, et al., J. Anal. At. Spectrom. 26 (2011) 1919.
55. U E A Fittschen, and G Falkenberg, Spectrochim. Acta Part B At. Spectrosc. 66 (2011) 567.
56. E Lombi, K G Scheckel, and I M Kempson, Environ. Exp. Bot. 72 (2011) 3.
57. E Lombi, M D de Jonge, E Donner, et al., Anal. Bioanal. Chem. 400 (2011) 1637.
58. E Lombi, and J Susini, Plant Soil 320 (2009) 1.
59. L Lu, R Xie, T Liu, et al., Chemosphere 175 (2017) 356.
60. Y Zhu, X Cai, J Li, et al., Nanomedicine Nanotechnology, Biol. Med. 10 (2014) 515.
61. J A Ezzo, J. Anthropol. Archaeol. 13 (1994) 34.
62. A L Rheingold, S Hues, and M N Cohen, J. Chem. Educ. 60 (1983) 233.
63. S Kikuchi, H Makita, S Mitsunobu, et al., Chem. Lett. 40 (2011) 680.
64. K Siegbahn, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 268 (1970) 33.
65. D. Wotton, “Functionalisation of graphite surfaces with varying concentrations of nitric acid and aqua regia, and their effect on the deposition of gold nanoparticles”, MPhil Thesis, Cardiff University,‎ (2017).
66. J Q Zhong, M Wang, W H Hoffmann, et al., Appl. Phys. Lett. 112 (2018).
67. N. Stojilovic and  J. Chem. Educ. 89 (2012), 1331.
68. O Renault, D Samour, J F Damlencourt, et al., Appl. Phys. Lett. 81 (2002) 3627.
69. E B Manaia, M P Abuçafy, B G Chiari-Andréo, et al., Int. J. Nanomedicine 12 (2017) 4991.
70. R De Marco, and J P Veder, TrAC Trends Anal. Chem. 29 (2010) 528.
71. Y Mao, Y Su, and B S Hsiao, Eur. Polym. J. 81 (2016) 433.
72. R Neutze and K Moffat, Curr. Opin. Struct. Biol. 22 (2012) 651.
73. A Hanafusa, Y Muramatsu, Y Kaburagi, et al., J. Appl. Phys. 110 (2011) 1.
74. I Jiménez, L Terminello, F Himpsel, et al., J. Electron Spectros. Relat. Phenomena 101103 (1999) 611.
75. J H Guo, S Kastanov, J Soderstrom, et al., J. Electron Spectros. Relat. Phenomena 181 (2010) 197.
76. M Magnuson, J H Guo, S M Butorin, et al., J. Chem. Phys. 111 (1999) 4756.
77. Y Zhang, J E Downes, S Wang, et al., Thin Solid Films 515 (2006) 394.
78. J Iihara, Y Muramatsu, T Takebe, et al., Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44 (2005) 6612.
79. M Kawaguchi, S Kuroda, and Y Muramatsu, J. Phys. Chem. Solids 69 (2008) 1171.
80. H Adachi, M Tsukada, and C Satoko, J. Phys. Soc. Japan 45 (1978) 875.
81. R Kopelent, J A Van Bokhoven, M Nachtegaal, et al., Phys. Chem. Chem. Phys. 18 (2016) 32486.
82. Y Ueno, Y Muramatsu, M M Grush, et al., Environ. Technol. 38 (2000) 2.
83. J Nordgren, G Bray, S Cramm, et al., Rev. Sci. Instrum. 60 (1989) 1690

تحت نظارت وف ایرانی