نوع مقاله : مقاله پژوهشی
نویسنده
گروه فیزیک، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد
چکیده
هدف دراین مقاله، بررسی خواص دینامیکی یک میدان دو مدی تغییر شکل یافتة جفت شده با یک اتم دو ترازی در غیاب تقریب موج چرخان است. در قسمت اول یک مدل نظری برای این نوع بر همکنش ارائه میشود. در قسمت دوم ماتریس چگالی کاهش یافتۀ میدان در حضور و در غیاب تقریب موج چرخان به دست آورده میشود. سپس اثرات جملات پاد چرخان و پارامتر تغییر شکل با استفاده از روشهای عددی روی آمار شمارش فوتونها و همبستگی متقایل بین مدهای میدان و چلاندگی کوادراتورهای میدان بررسی میشود و نشان میدهیم حتی در محدودة اعتبار تقریب موج چرخان (بر همکنش ضعیف)، اثرات جملات پاد چرخان روی خواص میدان بسیار مهم است.
کلیدواژهها
عنوان مقاله [English]
Quantum dynamics of a f-deformed cavity-field beyond the rotating wave approximation
نویسنده [English]
- M Daeimohammad
Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]
The aim of this study is to investigate dynamical properties of a two-mode f-deformed cavity- field coupled to an effective two-level atom with and without the rotating wave approximation. The first section discusses the theoretical model of the interaction between a two-mode cavity-field and an effective two-level atom within the framework of an f-DJCM without the rotating wave approximation. After that, we obtain the reduced density matrix of the cavity-field with and without the rotating-wave approximation. Then, we have investigated the effect of the counter-rotating terms on temporal evolution of various non-classical properties of the cavity-field, i.e., photon-counting statistics, the cross correlation between the modes of the field, and the quantum fluctuations of the quadrature components. Particularly, we compare the numerical result for three different values of the deformation parameter q (q=1, q=1.1, q=0.9) with and without applying the rotating wave approximation. By using of the numerical method, we concluded that even under the condition in which the RWA is considered to be valid, there are the significant effects of virtual-photon field on the photon-counting statistics, the cross correlation between the modes of the field, and the quantum fluctuations of the quadrature components.
کلیدواژهها [English]
- f-deformed Jaynes-Cummings model
- rotating wave approximation
- counter-rotating terms
- virtual-photon processes
- L Allen and J H Eberly, “Optical Resonanc and Two-Level Atoms”, Willey, New York (1975).
- E T Jaynes and F W Cummings, Proc. IEEE 51 (1963) 89.
- M S Abdalla, M M A Ahmed, and A S F Obada. Physica A. 162 (1990) 215.
- M S Abdalla, M M A Ahmed, and A S F Obada. Physica. A. 170 (1991) 393.
- C V Sukumar and B Buck. Phys. Lett. A. 83 (1981) 211.
- P Zhou, Z L Hu, and J S Peng. J. Mod. Optics 39 (1992) 49.
- N B Narozhny, J J Sanchez-Mondragon, and J H Eberly. Phys. Rev. A. 23 (1981) 236.
- S Singh. Phys. Rev. A. 25 (1982)3206.
- P Meystre and M S Zubairy. Phys. Lett. A. 89 (1982)390.
- G Rempe, H Walther, and N Klein. Phys. Rev. Lett. 58 (1987) 353.
- G Compangno and G M Palma. Phys. Rev. A. 7 (1988) 2979.
- P D Drummond. Phys. Rev. A. 35 (1987) 4253.
- M S Abdalla and S A Hassan. Physica, A.163 (1990) 822.
- C Baxter, M Babiker, and R Loudon. J. Mod. Optic 37 (1990) 685.
- R Passante, F Persico, and G Compagno. Phys. Rev. A. 31 (1985) 2837.
- R Vyas and S Singh, Phys. Rev. A. 33 (1985) 375.
- P W Milonni, J R Ackerhalt, and H W Galbralth. Phys. Rev. Lett. 50 (1986) 966.
- J S Peng and G X Li, Phys. Rev. A. 47 (1993) 3167.
- M D Crisp, Phys. Rev. A. 43 (1991) 2430.
- C F Lo, Quantum Semiclass. Opt. L 63 (1998).
- M F Fang and P Zhou, J. Mod. Opt. 42 (1995) 1199.
- S Singh. Phys. Rev. A. 25 (1982) 3206.
- M Tavis and F W Cummings. Phys. Rev. 170 (1968) 379
- C V Sukumar and B Buck, J. Phys. A.17، (1984)885
- C Buzano, M G Rasetti, and M L Rastello. Phys. Rev. Lett. 62 (1989).
- M Chaichian, D Ellinas and D Kulish. Phys .Rev. Lett. 65 (1990)980
- O de los Santos-Sanchez, J J Recamier Phys .B: At Mol. Opt .Phys. 45 (2012) 015502
- M Daeimohammad, F Kheirandish, and M R Abolhasany. Int. J. Theor. Phys. 48 (2009) 693.
- M Daeimohammad, F Kheirandish, and K Saeedi. Int. J. Theor. Phys. 50 (2011)171.
- A S Altowyan, S Abdel-Khalek, K Berrada. Results in Physics 16 (2020) 102924
- S C Gou. Phys. Rev. A 40 (1989) 5116.
- S S Sharma, N K Sharma, and L Zamick, Phys. Rev. A 56 (1997) 694; C. F. Lo and K. L. Liu, Phys. Rev. A 59 (1999) 3136.
- B Buck and C V Sukumar, J. Phys. A: Math. Gen. 17 885 (1984); G. S. Agarwal. J. Opt. Soc. Am. B 2 (1985) 480.
- M H Naderi, M Soltanolkotabi, and R Roknizadeh. J. Phys. Soc. Jpn. 73 (2004) 2413.
- J Wei and E Norman, J. Math. Phys. (N.Y) 4 (1963) 575.
- Sh Dehdashti, A Mahdifar, M Bagheri Harouni, and R Roknizadeh, Ann.Phys. (N.Y.) 334 (2013) 321.
- W H Louisell, “Quantum Statistical Properties of Radiation”, Wiley, New York (1973).
- L Mandel, Opt. Lett. 4 (1979) 205.
- M O Scully and M S Zubairy . “Quantum Optics”. Cambridge University Press, Cambridge (1997).
- M Arik and D D Coon. J. Math. Phys. 17 (1976) 524.
- H Paul. Rev. Mod. Phys. 54 (1982)1061.
- R Hanbury-Brown and R Q Twiss. Nature 177 (1956) 27.
- C M Caves and B L Schumaker. Phys. Rev, 31 (1985) 3068; B. L. Schumaker and C. M. Caves. Phys. Rev. A 31 (1985) 3093.
- M H Naderi, Can. J. Phys. 85 (2007)1071.