نوع مقاله : مقاله مروری
نویسندگان
دانشکده فیزیک، دانشگاه تبریز، تبریز
چکیده
نانوذرات فریتهای اسپینلی از مهمترین مواد مغناطیسی به شمار میآیند که در دو دهة اخیر استفاده از آنها در حوزههای مختلف به طرز چشمگیری در حال افزایش است. با معرفی و ورود این نانومواد به حوزة پزشکی و مطرح شدن ایدۀ استفاده از آنها در کاربردهای مختلف درمانی و بالینی، محققان زیادی در این زمینه شروع به پژوهش کرده و یافتههای جدیدی را ارائه کردهاند. از جمله مهمترین کاربردها و ایدههای استفاده از نانوذرات فریتهای اسپینلی در حوزة پزشکی میتوان به افزایش وضوح تصاویر در تصویربرداری تشدید مغناطیسی اشاره کرد. نتایج تحقیقات تجربی روی موجودات زنده نشان میدهد که وارد کردن نانوذرات فریتهای اسپینلی در نزدیکی غدد سرطانی باعث افزایش وضوح تصاویر میشود و تشخیص بیماریها را آسانتر میکند. گرمادرمانی مغناطیسی یکی دیگر از کاربردهای نانوذرات فریتهای اسپینلی است که در آن عوامل متعددی روی بازده فرایند تاثیر گذار است. این روش هنوز به صورت کاربردی روی انسان گسترش پیدا نکرده و بیشتر به صورت تحقیقاتی و آزمایشگاهی در حال مطالعه است. دارورسانی هدفمند، سومین کاربرد نانوذرات فریتهای اسپینلی در حوزة پزشکی است و یکی از پیشرفتهترین روشهای درمانی به شمار میآید. جهت حصول بهترین نتیجه، پارامترهای متعددی در این روش باید در نظر گرفته شود. با توجه به اهمیت موضوع سلامتی و درمان بیماریهای صعب العلاج، هدف اصلی این مقاله مروری بر فعالیتهای انجام یافته در استفاده از نانوذرات فریتهای اسپینلی در این سه روش است.
کلیدواژهها
عنوان مقاله [English]
Advanced applications of spinel ferrite nanoparticles in medicine: Magnetic hyperthermia, magnetic resonance imaging and targeted drug delivery
نویسندگان [English]
- H Jalili
- B Aslibeiki
- N Eskandarzadeh
Faculty of Physics, University of Tabriz, Tabriz, Iran
چکیده [English]
Spinel ferrites nanoparticles are among the most important magnetic materials and their applications in different areas have increased significantly in the last two decades. The idea of using ferrites nanoparticles in medical applications, caused attraction of attention of researchers in worldwide to this field and increase number of studies on the subject. The increase of the magnetic resonance imaging (MRI) contrast is one of the most important medical applications of spinel ferrite nanoparticles. The imaging results of live organisms show that the spinel ferrite nanoparticles can increase the contrast of images of cancerous cells and therefore help tumors diagnosis. Magnetic hyperthermia is another application of spinel ferrite nanoparticles, in which several factors affect the specific adsorption rate and efficiency of the method. However, this method has not yet been applied to human kind, and it is being studied in laboratories on animals like mouse etc. Targeted drug delivery is the third application of spinel ferrite nanoparticles in the field of medicine. This method is one of the most advanced treatment routes. In this method, several parameters must be considered to achieve the best results. Considering the importance of health and treatment, the main purpose of this review is to give the latest results of studies on the three mentioned methods on using the spinel ferrite nanoparticles for medical purposes.
کلیدواژهها [English]
- magnetic nanoparticles
- spinel ferrites
- medical applications
- K K Kefeni, T A Msagati, T T Nkambule, and B B Mamba, Materials Science and Engineering: C, 107 (2020) 110314.
- F L Deepak, M Bañobre-López, E Carbó-Argibay, M F Cerqueira, Y Piñeiro-Redondo, J Rivas, C M Thompson, S Kamali, C odríguez-Abreu, K Kovnir, and Y V Kolen’ko, The Journal of Physical Chemistry C, 119 (2015) 11947.
- V Mameli, A Musinu, A rdu, G Ennas, D Peddis, D Niznansky, C Sangregorio, C Innocenti, NT Thanh, and C. Cannas, Nanoscale 8 (2016) 10124.
- J Sánchez, D A Cortés-Hernández, M Rodríguez-Reyes, Journal of Alloys and Compounds 781 (2019) 1040.
- S Y Srinivasan, K M Paknikar, D Bodas, and V Gajbhiye, Nanomedicine 13 (2018) 1221.
- A Z Alshemary, M Akram, Y F Goh, U Tariq, F K Butt, A Abdolahi, and R Hussain, Ceramics International 41 (2015) 11886.
- R Asadi, H Abdollahi, M Gharabaghi, and Z Boroumand, Advanced Powder Technology 31, 4 (2020) 1480.
- S Faraji, G Dini, and M Zahraei, Journal of Magnetism and Magnetic Materials 475 (2019) 137.
- A Nigam, S Pawar, Ceramics International 46 (2020) 4058.
10. S B Somvanshi, P B Kharat, M V Khedkar, and K Jadhav, Ceramics International 46 (2020) 7642.
11. T Ruthradevi, J Akbar, G S Kumar, A Thamizhavel, G Kumar, R Vatsa, G Dannangoda, K Martirosyan, and E Girija, Journal of Alloys and Compounds 695 (2017) 3211.
12. H Zhang, J Wang, Y Zeng, G Wang, S Han, Z Yang, B Li, X Wang, J Gao, and L Zheng, Physics Letters A, (2020) 126600.
13. S R Patade, D D Andhare, S B Somvanshi, S A Jadhav, M V Khedkar, and K Jadhav, Ceramics International 46 (2020) 25576.
14. Y Du, X Liu, Q Liang, X J Liang, and J Tian, Nano letters 19 (2019) 3618.
15. S Aalaye, P Kameli, H Salamati, and H Arabi, Iranian Journal of Physics Research 12 (2013) 361.
15. س ا اعلایی، پ کاملی، ه سلامتی و ه عربی، مجله پژوهش فیزیک ایران 12، 4 (1391) 361.
16. M Eshraghi, Iranian Journal of Physics Research 17 (2017) 387.
16. م اشراقی، مجله پژوهش فیزیک ایران 17، 3 (1396) 387.
17. B Aslibeiki and P Kameli, Iranian Journal of Physics Research, 17 (2017) 421.
17. ب اصلی بیکی و پ کاملی، مجله پژوهش فیزیک ایران 17، 3 (1396) 421.
18. D Tomar, P Jeevanandam, Journal of Alloys and Compounds 843 (2020) 155815.
19. B Aslibeiki, and P Kameli, Journal of Superconductivity and Novel Magnetism 28 (2015) 3343.
20. B Aslibeiki and G Hassanzadeh, Iranian Journal of Physics Research 19 (2019) 303.
20. ب اصلی بیکی و گ حسن زاده، مجله پژوهش فیزیک ایران 19، 2 (1398) 303.
21. B Nasr, J Amighian, and M Mozaffar, Iranian Journal of Physics Research 6, 1 (2006) 49.
21. ب نصر، ج عمیقیان و م مظفر، مجله پژوهش فیزیک ایران 6، 1 (1385) 49.
22. B Aslibeiki, P Kameli, M Ehsani, H Salamati, G. Muscas, E. Agostinelli, V. Foglietti, S. Casciardi, and D. Peddis, Journal of Magnetism and Magnetic Materials 399 (2016) 236.
23. S Faraji, G Dini, and M Zahraei, iut-jame 37 (2018) 105.
24. R Nayerhoda, F Asjadi, and P Seifi, M Salimi, iut-jame 34 (2015) 35.
25. S C Goh, C H Chia, S Zakaria, M Yusoff, C Y Haw, S Ahmadi, N M Huang, and H N Lim, Materials Chemistry and Physics 120 (2010) 31.
26. M Sivakumar, A Towata, K Yasui, T Tuziuti, and Y Iida Current Applied Physics 6 (2006) 591.
27. M Sivakumar, A Towata, K Yasui, T Tuziuti, T Kozuka, Y Iida, M M Maiorov, E Blums, D Bhattacharya, N. Sivakumar, and M. Ashok Ultrasonics Sonochemistry 19 (2012) 652.
28. A Younes, N Kherrouba, and A Bouamer, Micro & Nano Letters n/a (2021).
29. S F Moustafa and M B Morsi, Materials Letters 34 (1998) 241.
30. J C Fariñas, R Moreno, A Pérez, M A García, M García-Hernández, M D Salvador, and A Borrell, Journal of the European Ceramic Society 38 (2018) 2360.
31. L Zhenyu, X Guangliang, and Z Yalin, Nanoscale Research Letters 2 (2006) 40.
32. R Misra, A Kale, R Srivastava, and O Senkov, Materials science and technology 19 (2003) 826.
33. M M Baig, A Yousuf, S Zulfiqar, A Safeer, P O Agboola, I Shakir, and M F Warsi, Materials Research Express 8 (2020) 035002
34. E Mazarío, P Herrasti, M Morales, and N Menéndez, Nanotechnology 23 (2012) 355708.
35. A M Ibrahim, M Abd El-Latif, and M M Mahmoud, Journal of Alloys and Compounds 506 (2010) 201.
36. L Franzel, M F Bertino, Z J Huba, and E E Carpenter, Applied Surface Science 261 (2012) 332.
37. M M Naik, H B Naik, G Nagaraju, M Vinuth, K Vinu, and R Viswanath, Nano-Structures & Nano-Objects 19 (2019) 100322.
38. R Kleef, E D Hager, “Fever, pyrogens and cancer, in: Hyperthermia in cancer treatment: a primer”, Springer (2006).
39. A Jordan, P Wust, H Fählin, W John, A Hinz, and R Felix, International Journal of Hyperthermia 9 (1993) 51.
40. S E Sandler, B Fellows, and O T Mefford, “Best practices for characterization of magnetic nanoparticles for biomedical applications, in”, ACS Publications)2019(.
41. A Farzin, SA Etesami, J Quint, A Memic, and A Tamayol, Advanced Healthcare Materials 9 (2020) 1901058.
42. M Palihawadana-Arachchige, H Nemala, VM Naik, and R. Naik, Journal of Applied Physics 121 (2017) 023901.
43. B Aslibeiki, P Kameli, and H Salamati, Iranian Journal of Physics Research 16 (2017) 251.
43. ب اصلی بیکی، پ کاملی و ه سلامتی، مجله پژوهش فیزیک ایران 16، 4 (1395) 251.
44. D F Coral, P M Zelis, M Marciello, P Morales Mdel, A Craievich, F H Sanchez, and M B van Raap, Langmuir 32 (2016) 1201.
45. B Aslibeiki, M H Ehsani, F Nasirzadeh, and M A Mohammadi, Materials Research Express 4 (2017) 075051.
46. B Dutta, N G Shetake, S L Gawali, B K Barick, K C Barick, P D Babu, B N Pandey, K I Priyadarsini, and P A Hassan, Journal of Alloys and Compounds 737 (2018) 347.
47. S V Jadhav, B M Kim, H Y Lee, I C Im, A A Rokade, S S Park, M P Patil, G D Kim, Y S Yu, and S H Lee, Journal of Alloys and Compounds 745 (2018) 282.
48. B Sanz, R Cabreira Gomes, T E Torres, D P Valdés, E Lima, E De Biasi, R D Zysler, M R Ibarra, and G F Goya, ACS Applied Nano Materials (2020).
49. X Lasheras, M Insausti, IG de Muro, EGaraio, F Plazaola, M Moros, L De Matteis, JM de la Fuente, and L Lezama, J Phys Chem C 120 (2016) 3492.
50. H Jalili, B Aslibeiki, A G Varzaneh, and V A Chernenko, Beilstein journal of nanotechnology 10 (2019) 1348.
51. Ç E Demirci Dönmez, P K Manna, R Nickel, Su Aktürk, and J van Lierop, ACS Applied Materials & Interfaces 11 (2019) 6858.
52. H Etemadi and P G Plieger, ACS Omega 5 (2020) 18091.
53. S Ebrahimisadr, B Aslibeiki, and R Asadi, Physica C: Superconductivity and its Applications 549 (2018) 119.
54. D Ni, W Bu, E B Ehlerding, W Cai, and J Shi, Chemical Society Reviews 46 (2017) 7438.
55. A Banerjee, B Blasiak, E Pasquier, B Tomanek, and S Trudel, RSC advances 7 (2017) 38125.
56. S Mastrogiacomo, W Dou, J A Jansen, and XF Walboomers, Molecular Imaging and Biology 21 (2019) 1003.
57. N J Serkova, Frontiers in immunology 8 (2017) 590.
58. M Jeon, M V Halbert, Z R Stephen, and M Zhang, Advanced Materials 33 (2021) 1906539.
59. H Wei, O T Bruns, M G Kaul, E C Hansen, M Barch, A. Wiśniowska, O Chen, Y Chen, N Li, and S Okada, Proceedings of the national academy of sciences 114 (2017) 2325.
60. R G Andrade, S R Veloso, and E Castanheira, International Journal of Molecular Sciences 21 (2020) 2455.
61. M Menelaou, Z Iatridi, I Tsougos, K Vasiou, C Dendrinou-Samara, and G Bokias, Dalton Transactions 44 (2015) 10980.
62. M Cho, A Cervadoro, M R Ramirez, C Stigliano, A Brazdeikis, V L Colvin, P Civera, J Key, and P Decuzzi, Nanomaterials 7 (2017) 72.
63. J Lin, P Xin, L An, Y Xu, C Tao, Q Tian, Z Zhou, B Hu, and S Yang, Chemical Communications 55 (2019) 478.
64. K Strebhardt, A Ullrich, Nature Reviews Cancer 8 (2008) 473.
65. Q Sun, X Sun, X Ma, Z Zhou, E Jin, B Zhang, Y Shen, E A Van Kirk, W J Murdoch, and J R Lott, Advanced materials 26 (2014) 7615.
66. Q Sun, M Radosz, and Y Shen, Journal of controlled release 164 (2012) 156.
67. V P Torchilin, European Journal of Pharmaceutical Sciences 11 (2000) S81.
68. R Langer, Nature 392 (1998) 5.
69. A S Lübbe, C Alexiou, and C Bergemann, Journal of Surgical Research 95 (2001) 200.
70. D E Meyer, B Shin, G Kong, M Dewhirst, and A Chilkoti, Journal of controlled release 74 (2001) 213.
71. H M Lin, W K. Wang, P A Hsiung, and S G Shyu, Acta biomaterialia 6 (2010) 3256.
72. N Rapoport, D Christensen, H Fain, L Barrows, and Z Gao, Ultrasonics 42 (2004) 943.
73. K M Krishnan, IEEE transactions on magnetics 46 (2010) 2523.
74. T Indira and P Lakshmi, Int J Pharm Sci Nanotechnol 3 (2010) 1035.
75. Z Karimi, Y Mohammadifar, H Shokrollahi, SK Asl, G Yousefi, and L Karimi, Journal of Magnetism and Magnetic Materials 361 (2014) 150.
76. N H Nam, D H Doan, H T M Nhung, B T Quang, P H Nam, P Q Thong, N X Phuc, and H P Thu, Materials Chemistry and Physics 172 (2016) 98.
77. Y Ding, SZ Shen, H Sun, K Sun, F Liu, Y Qi, and J Yan, Materials Science and Engineering: C, 48 (2015) 487.
78. S Hamarat Sanlıer, M Yasa, AO Cihnioglu, M Abdulhayoglu, H Yılmaz, and G Ak, Artificial Cells, Nanomedicine, and Biotechnology 44 (2016) 943.
79. M Hałupka-Bryl, K Asai, S Thangavel, M Bednarowicz, R Krzyminiewski, Y Nagasaki, Colloids and Surfaces B: Biointerfaces 118 (2014) 140.
80. V V Mody, A Cox, S Shah, A Singh, W Bevins, and H Parihar, Applied Nanoscience 4 (2014) 385.
81. B Bahrami, M Hojjat-Farsangi, H Mohammadi, E Anvari, G Ghalamfarsa, M Yousefi, and F Jadidi-Niaragh, Immunology Letters 190 (2017) 64.
82. Q Zhang, I Lee, J B Joo, F Zaera, and Y Yin, Accounts of Chemical Research 46 (2013) 1816.
83. S H Hu, D M Liu, W L Tung, C F Liao, and S Y Chen, Advanced Functional Materials, 18 (2008) 2946.
84. C Cannas, A Ardu, A Musinu, D Peddis, and G Piccaluga, Chemistry of Materials 20 (2008) 6364.
85. Y Zhu, T Ikoma, N Hanagata, and S Kaskel, Small 6 (2010) 471.
86. F Lu, A Popa, S Zhou, J J Zhu, and ACS Samia, Chemical Communications 49 (2013) 11436.
87. B Cai, M Zhao, Y Ma, Z Ye, and J Huang, ACS applied materials & interfaces 7 (2015) 1327.
88. G Wang, Y Ma, L Zhang, J Mu, Z Zhang, X Zhang, H Che, Y Bai, and J Hou, Journal of Magnetism and Magnetic Materials 401 (2016) 647.
89. W Montha, W Maneeprakorn, N Buatong, I M Tang, W Pon-On, Materials Science and Engineering: C, 59 (2016) 235.
90. J Stergar, Z Jirák, P Veverka, L Kubíčková, T Vrba, J Kuličková, K Knížek, F Porcher, J Kohout, and O Kaman, Journal of Magnetism and Magnetic Materials 475 (2019) 429.
91. C S Kumar and F Mohammad, Advanced drug delivery reviews 63 (2011) 789.
92. C S Brazel, Pharmaceutical research 26 (2009) 644.
93. A K Hauser, R J Wydra, N A Stocke, K W Anderson, and J Z Hilt, Journal of Controlled Release 219 (2015) 76.
94. H Guo, W Chen, X Sun, Y N. Liu, J Li, and J Wang, Carbohydrate polymers 118 (2015) 209.
95. C A Monnier, D Burnand, B Rothen-Rutishauser, M Lattuada, A Petri-Fink, European Journal of Nanomedicine 6 (2014) 201-215.
96. P Tartaj, M del Puerto Morales, S Veintemillas-Verdaguer, T González-Carreño, and C J Serna, Journal of physics D: Applied physics 36 (2003) R182.
97. J S Kim, T J Yoon, K N Yu, B G Kim, S J Park, H W Kim, K H Lee, S B Park, J K Lee, and M H Cho, Toxicological Sciences 89 (2006) 338.
98. J Ahmad, H A Alhadlaq, A Alshamsan, M A Siddiqui, Q Saquib, S T Khan, R Wahab, A A Al‐Khedhairy, J Musarrat, and M J Akhtar, Journal of Applied Toxicology 36 (2016) 1284.
99. E Fröhlich, Artificial cells, nanomedicine, and biotechnology 46 (2018) 1091.
- J S Tsuji, A D Maynard, P C Howard, J T James, C W Lam, D B Warheit, and A B Santamaria, Toxicological sciences 89 (2006) 42.
- S M Ansari, R D Bhor, K R Pai, S Mazumder, D Sen, Y D Kolekar, and C Ramana, ACS Biomaterials Science & Engineering 2 (2016) 2139.
- A Sunny, A K KS, V Karunakaran, M Aathira, G R Mutta, K K Maiti, V R Reddy, and M Vasundhara, Nano-Structures & Nano-Objects 16 (2018) 69.
- C Europea, “The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies”, European Commission (2006).
- A D Dwivedi, S P Dubey, M Sillanpää, Y N Kwon, C Lee, and R S Varma, Coordination Chemistry Reviews 287 (2015) 64.