نوع مقاله : مقاله مروری

نویسندگان

دانشکده فیزیک، دانشگاه تبریز، تبریز

چکیده

نانوذرات فریت‌های ‏ اسپینلی از مهم‌ترین مواد مغناطیسی به شمار‌‌ می‌آیند که در دو دهة اخیر استفاده از آنها در حوزه‌های مختلف به طرز چشمگیری در حال افزایش است. با معرفی و ورود این نانومواد به حوزة پزشکی و مطرح شدن ایدۀ استفاده از آنها در کاربردهای مختلف درمانی و بالینی، محققان زیادی در این زمینه شروع به پژوهش کرده و یافته‌های جدیدی را ارائه کرده‌اند. از جمله مهم‌ترین کاربردها و ایده‌های استفاده از نانوذرات فریت‌های ‏ اسپینلی در حوزة پزشکی‌‌ می‌توان به افزایش وضوح تصاویر در تصویربرداری تشدید مغناطیسی اشاره کرد. نتایج تحقیقات تجربی روی موجودات زنده نشان‌‌ می‌دهد که وارد کردن نانوذرات فریت‌های ‏ اسپینلی در نزدیکی غدد سرطانی باعث افزایش وضوح تصاویر‌‌ می‌شود و تشخیص بیماری‌ها را آسان‌تر می‌کند. گرمادرمانی مغناطیسی یکی دیگر از کاربردهای نانوذرات فریت‌های ‏ اسپینلی است که در آن عوامل متعددی روی بازده فرایند تاثیر گذار است. این روش هنوز به صورت کاربردی روی انسان گسترش پیدا نکرده و بیشتر به صورت تحقیقاتی و آزمایشگاهی در حال مطالعه‌‌ است. دارورسانی هدفمند، سومین کاربرد نانوذرات فریت‌های ‏ اسپینلی در حوزة پزشکی‌‌ ‌‌ است و یکی از پیشرفته‌ترین روش‌های درمانی به شمار می‌آید. جهت حصول بهترین نتیجه، پارامترهای متعددی در این روش باید در نظر گرفته شود. با توجه به اهمیت موضوع سلامتی و درمان بیماری‌های صعب العلاج، هدف اصلی این مقاله مروری بر فعالیت‌های انجام یافته در استفاده از نانوذرات فریت‌های ‏ اسپینلی در این سه روش‌ است.

کلیدواژه‌ها

عنوان مقاله [English]

Advanced applications of spinel ferrite nanoparticles in medicine: Magnetic hyperthermia, magnetic resonance imaging and targeted ‎drug delivery

نویسندگان [English]

  • H Jalili
  • B Aslibeiki
  • N Eskandarzadeh

Faculty of Physics, University of Tabriz, Tabriz, Iran

چکیده [English]

Spinel ferrites nanoparticles are among the most important magnetic materials and their applications in ‎different areas have increased significantly in the last two decades. The idea of using ferrites ‎nanoparticles in medical applications, caused attraction of attention of researchers in worldwide to this field ‎and increase number of studies on the subject. The increase of the magnetic resonance imaging (MRI) contrast is one ‎of the most important medical applications of spinel ferrite nanoparticles. The imaging results of ‎live organisms show that the spinel ferrite nanoparticles can increase the contrast of images of ‎cancerous cells and therefore help tumors diagnosis. Magnetic hyperthermia is another ‎application of spinel ferrite nanoparticles, in which several factors affect the specific adsorption ‎rate and efficiency of the method. However, this method has not yet been applied to human kind, ‎and it is being studied in laboratories on animals like mouse etc. Targeted drug delivery is the ‎third application of spinel ferrite nanoparticles in the field of medicine. This method is one of the ‎most advanced treatment routes. In this method, several parameters must be considered to ‎achieve the best results. Considering the importance of health and treatment, the main purpose of ‎this review is to give the latest results of studies on the three mentioned methods on using the ‎spinel ferrite nanoparticles for medical purposes‎.

کلیدواژه‌ها [English]

  • magnetic nanoparticles
  • spinel ferrites
  • medical applications
  1. K K Kefeni, T A Msagati, T T  Nkambule, and B B  Mamba, Materials Science and Engineering: C, 107 (2020) 110314.

  2. F L Deepak, M Bañobre-López, E Carbó-Argibay, M F Cerqueira, Y Piñeiro-Redondo, J Rivas, C M  Thompson, S Kamali, C  odríguez-Abreu, K Kovnir, and Y V  Kolen’ko, The Journal of Physical Chemistry C, 119 (2015) 11947.

  3. V Mameli, A Musinu, A  rdu, G Ennas, D Peddis, D Niznansky, C Sangregorio, C Innocenti, NT Thanh, and C. Cannas, Nanoscale 8 (2016) 10124.

  4. J Sánchez, D A Cortés-Hernández, M Rodríguez-Reyes, Journal of Alloys and Compounds 781 (2019) 1040.

  5. S Y Srinivasan, K M Paknikar, D Bodas, and V Gajbhiye, Nanomedicine 13 (2018) 1221.

  6. A Z Alshemary, M Akram, Y F Goh, U Tariq, F K Butt, A Abdolahi, and R Hussain, Ceramics International 41 (2015) 11886.

  7. R Asadi, H Abdollahi, M Gharabaghi, and Z Boroumand, Advanced Powder Technology 31, 4 (2020) 1480.

  8. S Faraji, G Dini, and M Zahraei, Journal of Magnetism and Magnetic Materials 475 (2019) 137.

  9. A Nigam, S Pawar, Ceramics International 46 (2020) 4058.


10. S B Somvanshi, P B Kharat, M V Khedkar, and K Jadhav, Ceramics International 46 (2020) 7642.


11. T Ruthradevi, J Akbar, G S Kumar, A Thamizhavel, G Kumar, R Vatsa, G Dannangoda, K Martirosyan, and E Girija, Journal of Alloys and Compounds 695 (2017) 3211.


12. H Zhang, J Wang, Y Zeng, G Wang, S Han, Z Yang, B Li, X Wang, J Gao, and L Zheng, Physics Letters A, (2020) 126600.


13. S R Patade, D D Andhare, S B Somvanshi, S A Jadhav, M V Khedkar, and K Jadhav, Ceramics International46 (2020) 25576‎.


14. Y Du, X Liu, Q Liang, X J Liang, and J Tian, Nano letters 19 (2019) 3618.


15. S Aalaye, P Kameli, H Salamati, and H Arabi, Iranian Journal of Physics Research 12 (2013) 361.


15. س ا اعلایی، پ کاملی، ه سلامتی و ه عربی، مجله پژوهش ‏فیزیک ایران 12، 4 (1391) 361‏.


16. M Eshraghi, Iranian Journal of Physics Research 17 (2017) 387.


16. م اشراقی، مجله پژوهش فیزیک ایران 17، 3 (1396) 387‏.


17. B Aslibeiki and P Kameli, Iranian Journal of Physics Research, 17 (2017) 421.


17. ب اصلی بیکی و پ کاملی، مجله پژوهش فیزیک ایران 17، ‏‏3 (1396) 421‏.


18. D Tomar, P Jeevanandam, Journal of Alloys and Compounds 843 (2020) 155815.


19. B Aslibeiki, and P Kameli, Journal of Superconductivity and Novel Magnetism 28 (2015) 3343.


20. B Aslibeiki and G Hassanzadeh, Iranian Journal of Physics Research 19 (2019) 303.


20. ب اصلی بیکی و گ حسن زاده، مجله پژوهش فیزیک ایران ‏‏19، 2 (1398) 303.‏


21. B Nasr, J Amighian, and M Mozaffar, Iranian Journal of Physics Research 6, 1 (2006) 49.


21. ب نصر، ج عمیقیان و م مظفر، مجله پژوهش فیزیک ایران 6، ‏‏1 (1385) 49.‏


22. B Aslibeiki, P Kameli, M Ehsani, H Salamati, G. Muscas, E. Agostinelli, V. Foglietti, S. Casciardi, and D. Peddis, Journal of Magnetism and Magnetic Materials 399 (2016) 236.


23. S Faraji, G Dini, and M Zahraei, iut-jame 37 (2018) 105.


24. R Nayerhoda, F Asjadi, and P Seifi, M Salimi, iut-jame 34 (2015) 35.


25. S C Goh, C H Chia, S Zakaria, M Yusoff, C Y Haw, S Ahmadi, N M Huang, and H N Lim, Materials Chemistry and Physics 120 (2010) 31.


26. M Sivakumar, A Towata, K Yasui, T Tuziuti, and Y Iida Current Applied Physics 6 (2006) 591.


27. M Sivakumar, A Towata, K Yasui, T Tuziuti, T Kozuka, Y Iida, M M Maiorov, E Blums, D Bhattacharya, N. Sivakumar, and M. Ashok Ultrasonics Sonochemistry 19 (2012) 652.


28. A Younes, N Kherrouba, and A Bouamer, Micro & Nano Letters n/a (2021).


29. S F  Moustafa and M B  Morsi, Materials Letters 34 (1998) 241.


30. J C Fariñas, R Moreno, A Pérez, M A García, M García-Hernández, M D Salvador, and A Borrell, Journal of the European Ceramic Society 38 (2018) 2360.


31. L Zhenyu, X Guangliang, and Z Yalin, Nanoscale Research Letters 2 (2006) 40.


32. R Misra, A Kale, R Srivastava, and O Senkov, Materials science and technology 19 (2003) 826.


33. M M Baig, A Yousuf, S Zulfiqar, A Safeer, P O Agboola, I Shakir, and M F Warsi, Materials Research Express8 (2020) 035002‎


34. E Mazarío, P Herrasti, M Morales, and N Menéndez, Nanotechnology 23 (2012) 355708.


35. A M Ibrahim, M Abd El-Latif, and M M Mahmoud, Journal of Alloys and Compounds 506 (2010) 201.


36. L Franzel, M F Bertino, Z J Huba, and E E Carpenter, Applied Surface Science 261 (2012) 332.


37. M M Naik, H B Naik, G Nagaraju, M Vinuth, K Vinu, and R Viswanath, Nano-Structures & Nano-Objects 19 (2019) 100322.


38. R Kleef, E D Hager, “Fever, pyrogens and cancer, in:  Hyperthermia in cancer treatment: a primer”, Springer (2006).


39. A Jordan, P Wust, H Fählin, W John, A Hinz, and R Felix, International Journal of Hyperthermia 9 (1993) 51.


40. S E Sandler, B Fellows, and O T Mefford, “Best practices for characterization of magnetic nanoparticles for biomedical applications, in”, ACS Publications)2019(.


41. A Farzin, SA Etesami, J Quint, A Memic, and A Tamayol, Advanced Healthcare Materials 9 (2020) 1901058.


42. M Palihawadana-Arachchige, H Nemala, VM Naik, and R. Naik, Journal of Applied Physics 121 (2017) 023901.


43. B Aslibeiki, P Kameli, and H Salamati, Iranian Journal of Physics Research 16 (2017) 251.


43. ب اصلی بیکی، پ کاملی و ه سلامتی، مجله پژوهش فیزیک ‏ایران 16، 4 (1395) 251‏.


44. D F Coral, P M Zelis, M Marciello, P Morales Mdel, A Craievich, F H Sanchez, and M B van Raap, Langmuir 32 (2016) 1201.


45. B Aslibeiki, M H Ehsani, F Nasirzadeh, and M A Mohammadi, Materials Research Express 4 (2017) 075051.


46. B Dutta, N G Shetake, S L Gawali, B K Barick, K C Barick, P D Babu, B N Pandey, K I Priyadarsini, and P A Hassan, Journal of Alloys and Compounds 737 (2018) 347.


47. S V Jadhav, B M Kim, H Y Lee, I C Im, A A Rokade, S S Park, M P Patil, G D Kim, Y S Yu, and S H Lee, Journal of Alloys and Compounds 745 (2018) 282.


48. B Sanz, R Cabreira Gomes, T E Torres, D P Valdés, E Lima, E De Biasi, R D Zysler, M R Ibarra, and G F Goya, ACS Applied Nano Materials (2020).


49. X Lasheras, M Insausti, IG de Muro, EGaraio, F Plazaola, M Moros, L De Matteis, JM de la Fuente, and L Lezama, J Phys Chem C 120 (2016) 3492.


50. H Jalili, B Aslibeiki, A G Varzaneh, and V A Chernenko, Beilstein journal of nanotechnology 10 (2019) 1348.


51. Ç E Demirci Dönmez, P K Manna, R Nickel, Su Aktürk, and J van Lierop, ACS Applied Materials & Interfaces 11 (2019) 6858.


52. H Etemadi and P G Plieger, ACS Omega 5 (2020) 18091.


53. S Ebrahimisadr, B Aslibeiki, and R Asadi, Physica C: Superconductivity and its Applications 549 (2018) 119.


54. D Ni, W Bu, E B Ehlerding, W Cai, and J Shi, Chemical Society Reviews 46 (2017) 7438.


55. A Banerjee, B Blasiak, E Pasquier, B Tomanek, and S Trudel, RSC advances 7 (2017) 38125.


56. S Mastrogiacomo, W Dou, J A Jansen, and XF Walboomers, Molecular Imaging and Biology 21 (2019) 1003.


57. N J Serkova, Frontiers in immunology 8 (2017) 590.


58. M Jeon, M V Halbert, Z R Stephen, and M Zhang, Advanced Materials 33 (2021) 1906539.


59. H Wei, O T Bruns, M G Kaul, E C Hansen, M Barch, A. Wiśniowska, O Chen, Y Chen, N Li, and S Okada, Proceedings of the national academy of sciences 114 (2017) 2325.


60. R G Andrade, S R Veloso, and E Castanheira, International Journal of Molecular Sciences 21 (2020) 2455.


61. M Menelaou, Z Iatridi, I Tsougos, K Vasiou, C Dendrinou-Samara, and G Bokias, Dalton Transactions 44 (2015) 10980.


62. M Cho, A Cervadoro, M R Ramirez, C Stigliano, A Brazdeikis, V L Colvin, P Civera, J Key, and P Decuzzi, Nanomaterials 7 (2017) 72.


63. J Lin, P Xin, L An, Y Xu, C Tao, Q Tian, Z Zhou, B Hu, and S Yang, Chemical Communications 55 (2019) 478.


64. K Strebhardt, A Ullrich, Nature Reviews Cancer 8 (2008) 473.


65. Q Sun, X Sun, X Ma, Z Zhou, E Jin, B Zhang, Y Shen, E A Van Kirk, W J Murdoch, and J R Lott, Advanced materials 26 (2014) 7615.


66. Q Sun, M Radosz, and Y Shen, Journal of controlled release 164 (2012) 156.


67. V P Torchilin, European Journal of Pharmaceutical Sciences 11 (2000) S81.


68. R Langer, Nature 392 (1998) 5.


69. A S Lübbe, C Alexiou, and C Bergemann, Journal of Surgical Research 95 (2001) 200.


70. D E Meyer, B Shin, G Kong, M Dewhirst, and A Chilkoti, Journal of controlled release 74 (2001) 213.


71. H M Lin, W K. Wang, P A Hsiung, and S G Shyu, Acta biomaterialia 6 (2010) 3256.


72. N Rapoport, D Christensen, H Fain, L Barrows, and Z Gao, Ultrasonics 42 (2004) 943.


73. K M Krishnan, IEEE transactions on magnetics 46 (2010) 2523.


74. T Indira and P Lakshmi, Int J Pharm Sci Nanotechnol 3 (2010) 1035.


75. Z Karimi, Y Mohammadifar, H Shokrollahi, SK Asl, G Yousefi, and L Karimi, Journal of Magnetism and Magnetic Materials 361 (2014) 150.


76. N H Nam, D H Doan, H T M Nhung, B T Quang, P H Nam, P Q Thong, N X Phuc, and H P Thu, Materials Chemistry and Physics 172 (2016) 98.


77. Y Ding, SZ Shen, H Sun, K Sun, F Liu, Y Qi, and J Yan, Materials Science and Engineering: C, 48 (2015) 487.


78. S Hamarat Sanlıer, M Yasa, AO Cihnioglu, M Abdulhayoglu, H Yılmaz, and G Ak, Artificial Cells, Nanomedicine, and Biotechnology 44 (2016) 943.


79. M Hałupka-Bryl, K Asai, S Thangavel, M Bednarowicz, R Krzyminiewski, Y Nagasaki, Colloids and Surfaces B: Biointerfaces 118 (2014) 140.


80. V V Mody, A Cox, S Shah, A Singh, W Bevins, and H Parihar, Applied Nanoscience 4 (2014) 385.


81. B Bahrami, M Hojjat-Farsangi, H Mohammadi, E Anvari, G Ghalamfarsa, M Yousefi, and F Jadidi-Niaragh, Immunology Letters 190 (2017) 64.


82. Q Zhang, I Lee, J B Joo, F Zaera, and Y Yin, Accounts of Chemical Research 46 (2013) 1816.


83. S H Hu, D M Liu, W L Tung, C F Liao, and S Y Chen, Advanced Functional Materials, 18 (2008) 2946.


84. C Cannas, A Ardu, A Musinu, D Peddis, and G Piccaluga, Chemistry of Materials 20 (2008) 6364.


85. Y Zhu, T Ikoma, N Hanagata, and S Kaskel, Small 6 (2010) 471.


86. F Lu, A Popa, S Zhou, J J Zhu, and ACS Samia, Chemical Communications 49 (2013) 11436.


87. B Cai, M Zhao, Y Ma, Z Ye, and J Huang, ACS applied materials & interfaces 7 (2015) 1327.


88. G Wang, Y Ma, L Zhang, J Mu, Z Zhang, X Zhang, H Che, Y Bai, and J Hou, Journal of Magnetism and Magnetic Materials 401 (2016) 647.


89. W Montha, W Maneeprakorn, N Buatong, I M Tang, W Pon-On, Materials Science and Engineering: C, 59 (2016) 235.


90. J Stergar, Z Jirák, P Veverka, L Kubíčková, T Vrba, J Kuličková, K Knížek, F Porcher, J Kohout, and O Kaman, Journal of Magnetism and Magnetic Materials 475 (2019) 429.


91. C S Kumar and F Mohammad, Advanced drug delivery reviews 63 (2011) 789.


92. C S Brazel, Pharmaceutical research 26 (2009) 644.


93. A K Hauser, R J Wydra, N A Stocke, K W Anderson, and J Z Hilt, Journal of Controlled Release 219 (2015) 76.


94. H Guo, W Chen, X Sun, Y N. Liu, J Li, and J Wang, Carbohydrate polymers 118 (2015) 209.


95. C A Monnier, D Burnand, B Rothen-Rutishauser, M Lattuada, A Petri-Fink, European Journal of Nanomedicine 6 (2014) 201-215.


96. P Tartaj, M del Puerto Morales, S Veintemillas-Verdaguer, T González-Carreño, and C J Serna, Journal of physics D: Applied physics 36 (2003) R182.


97. J S Kim, T J Yoon, K N Yu, B G Kim, S J Park, H W Kim, K H Lee, S B Park, J K Lee, and M H Cho, Toxicological Sciences 89 (2006) 338.


98. J Ahmad, H A Alhadlaq, A Alshamsan, M A Siddiqui, Q Saquib, S T Khan, R Wahab, A A Al‐Khedhairy, J Musarrat, and M J Akhtar, Journal of Applied Toxicology 36 (2016) 1284.


99. E Fröhlich, Artificial cells, nanomedicine, and biotechnology 46 (2018) 1091.



  1. J S Tsuji, A D Maynard, P C Howard, J T James, C W Lam, D B Warheit, and A B Santamaria, Toxicological sciences 89 (2006) 42.

  2. S M Ansari, R D Bhor, K R Pai, S Mazumder, D Sen, Y D Kolekar, and C Ramana, ACS Biomaterials Science & Engineering 2 (2016) 2139.

  3. A Sunny, A K KS, V Karunakaran, M Aathira, G R Mutta, K K Maiti, V R Reddy, and M Vasundhara, Nano-Structures & Nano-Objects 16 (2018) 69.

  4. C Europea, “The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies”, European Commission (2006).

  5. A D Dwivedi, S P Dubey, M Sillanpää, Y N Kwon, C Lee, and R S Varma, Coordination Chemistry Reviews 287 (2015) 64.         



 


 

ارتقاء امنیت وب با وف ایرانی