نوع مقاله : مقاله پژوهشی
نویسنده
بخش نانوبیوتکنولوژی، گروه مهندسی علوم زیستی، دانشکدة علوم و فنون نوین، دانشگاه تهران، تهران
چکیده
زیستحسگرهای بر روی بستر سیلیکن متخلخل که بر پایة طیفسنجی تبدیل فوریۀ تداخل بازتابی کار میکنند، به دلیل عدم استفاده از برچسب مورد توجه ویژهای قرار گرفتهاند. در این روش، نور بر سطح سیلیکن متخلخل تابانیده شده و طرح تداخلی از تمامی پرتوهای بازتاب شده از سطوح، ثبت میشود. بعد از این که سطح سیلیکن متخلخل در معرض آنالیت زیستی قرار گرفت، آنالیت بسته به اندازهاش، بر روی سطح لایه، یا با نفوذ به درون حفرهها بر روی دیواره آنها جذب میشود. این پدیده، باعث تغییر به ترتیب در ضریب شکست فصل مشترک سطح سیلیکن متخلخل با محیط پیرامون و ضریب شکست لایه سیلیکن متخلخل میشود. در نتیجه، به ترتیب کاهش در شدت قلۀ تبدیل فوریة طرح تداخلی یا جابهجایی در مکان آن مشاهده میشود که میتواند معیاری برای سنجشهای زیستی باشد. در این مقاله، ابتدا پایههای نظری طیفسنجی تبدیل فوریه تداخل بازتابی مورد بحث قرار گرفته است. سپس جزئیات تجربی استفاده از این روش بر روی بستر سیلیکن متخلخل اصلاح شده توضیح داده شده است. در نهایت دادههای تجربی حاصل از این روش برای تشخیص پروتئین استئوکلسین، قطعهای از ژن VKORC1 و باکتری ای-کلای ارائه شده است.
کلیدواژهها
عنوان مقاله [English]
Porous silicon biosensors based on reflectometric interference Fourier transform spectroscopy- theoretical foundations and experimental results
نویسنده [English]
- F Rahimi
Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده [English]
Porous silicon (PSi) biosensor based on reflectometric interference Fourier transform spectroscopy (RIFTS) has received a lot of attention due to its applicability as a label-free biosensor. In this approach, light is illuminated on the surface of a PSi layer and the interference pattern of all reflected beams from all interfaces is recorded. After exposing the PSi surface to bioanalyte, depending on analyte's size, it absorbs on the surface of PSi layer or penetrates to the pores and absorbs on the wall of the pores. This phenomenon causes variation in the refractive index of the interface of PSi/environment or in the refractive index of the layer respectively. As a consequence, decrease in peak intensity or shift in the peak position of fast Fourier transform of the interference pattern is observable, which can then be used as a key parameter for biosensing applications. In this work, theoretical foundations of RIFTS method were discussed. Then the experimental details of using this method for biosensing applications on modified porous silicon were described. Finally, experimental data for diagnosis of Osteocalcin protein, a piece of VKORC1 gen and Escherichia coli bacteria by RIFTS methods were illustrated.
کلیدواژهها [English]
- reflectometric interference Fourier transform spectroscopy
- Fabry–Perot layer
- porous silicon
- biosensors
- A. Rasooly et al., “Biosensors and biodetection”, Springer, (2009).
- A. N. Kozitsina, et al., Biosensors, 8, 2 (2018) 1.
- N. Khansili, G. Rattu, and P. M. Krishna, Sensor Actuat B-chem, 265 (2018) 35.
- X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta, 620, 1–2 (2008) 8.
- V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, Science, 278, 5339 (1997) 840.
- D. Holthausen, R. B. Vasani, S. J. P. McInnes, A. V Ellis, and N. H. Voelcker, ACS Macro Lett. 1, 7 (2012) 919.
- J. Feng, W. Zhao, B. Su, and J. Wu, Biosens. Bioelectron. 30, 1 (2011) 21.
- R. Vilensky, M. Bercovici, and E. Segal, Adv. Funct. Mater. 25, 43 (2015) 6725.
- F. Rahimi et al., Cell J. 20, 4 (2019) 584.
- N. Yu and J. Wu, Biosens. Bioelectron 146 (2019) 111726.
- M. Terracciano et al., Molecules 24, 12 (2019) 1.
- N. Massad-Ivanir, C. Shtenberg, T. Zeidman, and E. Segal, Adv. Funct. Mater. 20, 14 (2010) 2269.
- N. Massad-Ivanir et al., Sci. Rep. 6 (2016) 1.
- K. Urmann, S. Arshavsky-Graham, J. G. Walter, T. Scheper, and E. Segal, Analyst, 141, 18 (2016) 5432.
- F. Makiyan, F. Rahimi, M. Hajati, A. Shafiekhani, A. H. Rezayan, and N. Ansari-Pour , Colloids Surfaces B 181 (2019) 714.
- T. Guinan et al., Langmuir 29, 32 (2013) 10279.
- Z. Li, et al., Biomicrofluidics 10, 6 (2016) 1.
- M. P. Schwartz et al., Phys. Status Solidi Appl. Mater. Sci. 204, 5 (2007) 1444.
- M. P. Schwartz, et al., Anal. Chem. 79, 1 (2007) 327.
- N. H. Voelcker, et al., ChemBioChem 9, 11 (2008) 1776.
- Z. Li, Y. Tang, et al., Lab. Chip. 14, 2 (2014) 333.
- Y. Tang, L. Zhen, et al., Anal. Chem. 85, 5 (2013) 2787.
- J. Wu and M. J. Sailor, Adv. Funct. Mater. 19, 5 (2009) 733.
- H. Lin, et al.,, Langmuir 20, 12 (2004) 5104.
- M. Sedighi, et al., J. Mater. Sci. 53, 21 (2018) 14975.
- E. Hecht, “Optics fifth edition. chap. 9” Pearson (2017).
- M. J. Sailor, “Porous Silicon in Practice: Preparation, Characterization and Applications. chap. 5”, Wiley (2012).
- H. Angus Macleod, “Thin film optical Filters 4th Ed”. CRC Press (2010).
- O. S. Heavens, "Optical properties of thin solid films", Courier Corporation (1991).
- J. W. G. Gray and M. Robert, “Fourier transforms: an introduction for engineers”. Springer Science & Business Media, (2012).
- M. Yaghoubi, F. Rahimi, B. negahdari, A. H. Rezayan and A. Shafiekhani, Sci. reports 10 (2020) 16017.
D. G. Buerk, Biosensors: “Theory and applications”, CRC Press, (2014).