نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده علوم پایه، کالج الهوسون، دانشگاه کاربردی البلقا، سالت، اردن

چکیده

هدف کار حاضر استفاده از روش شاخص گالیتسکی- میگدال- فاینمن در مورد مولکول‌های دو اتمی 132Xe است، تا جابه‌جایی فاز مؤثری را به دست آوریم که در محاسبه سطح مقطع‌های مؤثر کل و وشکسانی به کار گرفته شده است. این مطالعه نشان می‌دهد که لازم است امواج جزئی تا 14-1) غالب است، در غیر این صورت امواج جزئی D و G غالب خواهند بود. بلندترین قله از تشدید موج- D و – G جزئی حاصل می‌شود که در آنها دستگاه حالت شبه- مقید با مانع مرکز گرای 2,4=l مقید شده است. همچنین سطح مقطع میانگین محاسبه شده است

کلیدواژه‌ها

عنوان مقاله [English]

‎ ‎Properties of 132Xe Neutral Atoms Scattering for 165K and 275K ‎Temperatures

نویسنده [English]

  • A Akour

Department of Basic Science, Al-Huson College, Al-Balqa Applied University, Salt, Jordan

چکیده [English]

This work aims to use an important method Galitskii-Migdal-Feynman (GMF) for ‎diatomic molecules 132Xe2, to calculate the effective phase shifts which are then used to ‎compute the effective total and viscosity cross sections at low density and temperature . ‎this study has shown that it’s crucial to include partial waves up to ‎ ‎; for ‎ ‎, the ‎effect of the potential becomes negligible .‎
‎ Comparing with partial waves cross sections we deduce that the cross section is ‎dominated by S-wave scattering for low energy (wave number k < 0.1 Å-1), otherwise D ‎and G partial waves dominate . The highest peak rises from the partial effective D and G-‎wave resonance, where the system sustains a quasi-bound state trapped by the centrifugal barrier. The average cross section is also determined. ‎

کلیدواژه‌ها [English]

  • Effective Total Cross Section
  • Effective Phase Shifts
  • Effective Viscosity Cross Section
  • Galitskii-Migdal-Feynman Formalism
  • 132Xe Gas
  1. RF Bishop, HB Ghassib, and MR Strayer. Low-Energy He-He Interactions with Phenomenological Potentials. Journal of Low Temperature Physics; 26 (1977) 669.
  2. BR Joudeh, AS Sandouqa, and HB Ghassib. Al-Sugheir MK. 3He-3He and 4He-4He Cross Sections in Matter at Low Temperature. Journal of Low Temperature Physics; 161 (2010) 348.
  3. IF Al-Maaitah, Total and Viscosity Cross Sections for Krypton Gas at Boiling Point. Applied Physics Research; 11 (2019) 88.
  4. IF Al-Maaitah, Quantum Second Virial Coefficients for Krypton-86 gas. Applied Physics Research; 10 (2018) 1.
  5. MC Bordage, SF Biagi, L L Alves, K Bartschat, and S Chowdhury et al. Comparisons of sets of electron–neutral scattering cross sections and swarm parameters in noble gases: III. Krypton and xenon. Journal of Physics D Applies Physics; 46 (2013) 334003.
  6. M Hayashi, Determination of electron-xenon total excitation cross-sections, from threshold to 100 eV from experimental values of Townsend's α. Journal of Physics D Applies Physics; 16 (1983) 581.
  7. P S Krstić and DR Schultz, Elastic and related transport cross sections for protons scattering from the noble gases He, Ne, Ar, Kr, and Xe. Physics of Plasmas; 13 (2006) 053501.
  8. VE Krohn and G R Ringo, Measurement of the Electron-Neutron Interaction by the Asymmetrical Scattering of Thermal Neutrons by Noble Gases. Physical Review Journals Archive; 148 (1966) 1303.
  9. I Amdu and E A Mason, Scattering of High Velocity Neutral Particles. VII. Xenon—Xenon. The Journal of Chemical Physics; 25 (1956) 624.
  10. R S Robinson, Energetic binary collisions in rare gas plasmas. Journal of Vacuum Science and Technology; 16 (1979) 185.
  11. AK Dham, W J Meath, A R Allnatt, R A Aziz and M Slaman, XC and HFD-B Potential Energy Curves for Xe-Xe and Releted Physical Properties. Chemical Physics; 142 (1990) 173.
  12. G Fekete, Phonon Spectra and Thermodynamic Properties of Rare Gas Solids Based on Empirical and Semi-empirical (ab initio) Two-body Potentials: A Comparative Study. Msc Thesis, Brock University, (2004).

13. JM Standard and PR Certain, Bounds to two‐ and three‐body long‐range interaction coefficients for S‐state atoms. The Journal of Chemical Physics; 83 (1985) 3002.

  1. M Alexandr and M Anatol, Monte Carlo Simulations of Thermodynamic Properties of Argon, Krypton and Xenon in Liquid and Gas State Using New ab initio Pair Potentials. Molecular Physics; 101 (2003)
  2. F Michael and J Z Bruno, Computation of the Transport Coefficients of Dense Fluid Neon, Argon, Krypton and Xenon by Molecular Dynamics. Molecular Physics; 73 (1991) 471.
  3. A V Phelps, Collision Cross Sections for Identical and Non-Identical Rare-Gas Atom Pairs for Energies from 0.01 eV to 10 keV. Boulder, Colorado : University of Colorado and National Institute of Standards and Technology, (2004)
  4. AM Ratner, Atoms and the Simplest Atomic Crystals. Physics Reports; 269 (1996) 197.
  5. A Fetter AL and JD Walecka, Quantum Theory of Many-Particle Systems. New York: McGraw-Hill, (1971).
  6. HB Ghassib, RF Bishop and MR Strayer, A Study of the Galitskii- Feynman T Matrix for Liquid 3 Journal of Low Temperature Physics; 23 (1976) 393.
  7. M Lee, Interaction in Low-Dimensional Bose-Einstein Condensates, D. The University of Oxford, UK, (2002).
  8. HT Stoof, M Bijlsma and M Houbiers, Theory of Interacting Quantum Gases. Journal of Research of NIST; 101 (1996) 443.
22. J P Aldridge and R H Davis, Calculated Ramsauer-Townsend effect in 4He-4He. Physical Review Letter; 19 (1967) 1001.

23. MJ Jamieson, A Dalgarno and J Yukich, Elastic Scattering of Hydrogen Atoms at Low Temperatures. Physical Review A; 46 (1992) 6956.