نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شیراز بخش فیزیک

2 دانشگاه شیراز

3 بخش شیمی / دانشگاه شیراز

4 بخش شبمی/دانشگاه شیراز

چکیده

نقاط کوانتومی (QDs) کالکوژن روی (ZnS) آلاییده با یون‌های پارامغناطیس فلزات واسطه (به ویژه Mn)، نانوبلورهای نیمه‌رسانای جدید، جذاب و کمتر بررسی شده‌ای هستند که خواص اپتیکی عالی و پایداری محیطی و گرمایی بهبودیافته‌ای در مقایسه با نقاط کوانتومی بر پایه کادمیوم دارند. در این مقاله، ما با استفاده از نقاط کوانتومی ZnS:Mn حل شده در محلول رنگی RhB ، امکان ساخت یک لیزر کاتوره‌ای بر پایه نقاط رنگی با بازخورد غیر تشدیدی را اثبات می‌کنیم. تغییرات غیرخطی طیف نشری برحسب انرژی برانگیختگی حکایت از یک آستانه لیزینگ کاتوره‌ای دارد. علاوه بر این، با افزایش تراکم پراکننده‌ها، ما یک جابجایی آبی به اندازه nm 10/3 در طول موج نشری و یک کاهش با ضریب 5/3 در آستانه RL مشاهده می‌کنیم. ما همچنین یک بحث نظری بر پایه نظریه پخش برای توضیح نتایج آزمایشگاهی مشاهده شده ارائه می‌کنیم

کلیدواژه‌ها

عنوان مقاله [English]

Fabrication of a dye-based random laser using ZnS:Mn quantum dots and investigating the effects of their concentration

نویسندگان [English]

  • A Ghasempour Ardakani 1
  • P Rafieipour 2
  • M J Samimipour 3
  • J Tashkhourian 4

1 Department of Physics, College of Science, Shiraz University, Shiraz, Iran

2 Department of Physics, College of Science, Shiraz University, Shiraz, Iran

3 Department of Physics, College of Science, Shiraz University, Shiraz, Iran

4 Department of Physics, College of Science, Shiraz University, Shiraz, Iran

چکیده [English]

Zinc chalcogenide quantum dots (QDs) doped with paramagnetic transition metal ions (particularly ZnS:Mn QDs) are new attractive but rarely examined semiconductor nanocrystals that have excellent optical properties and enhanced thermal and environmental stability compared to Cd-based QDs. In this paper, we demonstrate a dye-based random laser (RL) with nonresonant feedback using ZnS:Mn QDs as the scattering medium that are dispersed in a Rhodamine B (RhB) dye solution. The nonlinear variation of the emission spectrum as a function of the excitation energy implies a random lasing threshold. Moreover, we observe a blue-shift of the emission wavelength by 10.3 nm and a 5.3 times decrease in the RL threshold by increasing the scatterer concentration. We also provide a theoretical discussion based on the diffusion theory for explaining the observed experimental results.
 

کلیدواژه‌ها [English]

  • Mn doped ZnS quantum dots
  • multiple light scattering
  • random lasers
  1. N M Lawandy, R M Balachandran, A S L Gomes and E Sauvain, “Laser Action In Strongly Scattering Media,” Nature, Vol. 368 (1994) 436.

  2. H Cao, Y G Zhao, S T Ho, E W Seelig, Q H Wang and R P H Chang, “Random Laser Action In Semiconductor Powder,” Rev. Lett. Vol. 82 (1998) 2278.

  3. L Yang, G Feng, J Yi, K Yao, G Deng and S Zhou, “Effective random laser action in Rhodamine 6G solution with Al nanoparticles,” Opt. Vol. 50 (2011) 1816.

  4. S Xiao, T Li, D Huang, M Xu, H Hu, S Liu, C Wang and T Yi, “Random laser action from ceramic doped polymer films,” Modern Opt. Vol. 64 (2017) 1289.

  5. G D Dice, S Mujumdar and A Y Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Phys. Lett. Vol. 86 (2005) 131105.

  6. S Ning, Z Wu, H Dong, L Ma, B Jiao, Le Ding, Li Ding and F Zhang, “The Enhanced Random Lasing From Dye Doped Polymer Films With Different-Sized Silver Nanoparticles,” Organic Electronics, Vol. 30 (2016) 165.

  7. Z Shang, Z Tao and L Deng, “Random lasing assisted by CuSO4 and Au nanoparticles in random gain systems,” Mater. Exp. Vol. 7 (2017) 1848.

  8. E Heydari, I P Santos, L M L Marzán and J Stumpe, “Nanoplasmonically-engineered random lasing in organic semiconductor thin films,” Nanoscale Hariz. Vol. 2 (2017) 261.

  9. B R Anderson, R Gunawidjaja and H Eilers, “Low-threshold and narrow linewidth diffusive random lasing in rhodamine 6G dye-doped polyurethane with dispersed ZrO2 nanoparticles,” Opt. Soc. Am. B Vol. 31 (2014) 2363.

  10. E Jimenez-Villar, V Mestre, P C de Oliveira, W M Faustino, D S Silva and G F de Sá, “TiO2@Silica nanoparticles in a random laser: Strong relationship of silica shell thickness on scattering medium properties and random laser performance,” Phys. Lett. Vol. 104 (2014) 081909.

  11. L Ye, J Lu, C Lv, Y Feng, C Zhao, Z Wang and Y Cui, “Random lasing action in magnetic nanoparticles doped dye solutions,” Commun. Vol. 340 (2015) 151.

  12. L A Moura, P I R Pincheira, L J Q Maia, A S L Gomes and C B de Araújo, “Two-color random laser based on a Nd3+ doped crystalline powder,” Luminescence, Vol. 181 (2017) 44.

  13. R B Silva, A F Silva, A M B Silva and C B de Araújo, “Bichromatic random laser from a powder of rhodamine-doped sub-micrometer silica particles,” Appl. Phys. Vol. 115 (2014) 043515.

  14. S G Revilla, M Zayat, R Balda, M A Saleh, D Levy and J Fernández, “Low threshold random lasing in dye-doped silica nano powders,” Exp. Vol. 17 (2009) 13202.

  15. B H Hokr, J N Bixler, M T cone, J D Mason, H T Beier, G D Noojin, G I Petrov, L A Golovan, R J Thomas, B A Rockwell and V V Yakovlev, “Bright emission from a random Raman laser,” Comm. Vol. 5 (2014) 1.

  16. A Consoli and C López, “Lasing optical cavities based on macroscopic scattering elements,” Scientific Reports, Vol. 7 (2017) 40141.

  17. T Zhai, X Zhang, Z Pang, X Su, H Liu, S Feng and L Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. Vol. 11 (2011) 4295.

  18. J Yin, G Feng, S Zhou, Ho Zhang, S Wang and H Zhang, “The effect of the size of Au nanorods on random laser action in a disordered media of ethylene glycol doped with Rh6G dye,” SPIE Nanophotonics VI, Vol. 9884 (2016) 988426.

  19. T Zhai, J Chen, L Chen, J Wang, L Wang, D Liu, S Li, H Liu and X Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale, Vol. 7 (2015) 2235.

  20. Q Chang, X Shi, X Liu, J Tong, D Liu and Z Wang, “Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region,” Nanophotonics, Vol. 6 (2017) 1151.

  21. A Yadav, L Zhong, J Sun, L Jiang, G J Cheng and L Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Convergence, Vol. 4 (2017) 1.

  22. A G Ardakani, P Rafieipour, “Using ZnO nanosheets grown by electrodeposition in random lasers as scattering centers: the effects of sheet size and presence of mode competition,” Opt. Soc. Am. B. Vol. 35 (2018) 1708.

  23. H Zhang, G Feng, H Zhang, C Yang, J Yin and S Zhou, “Random laser based on Rhodamine 6G (Rh6G) doped poly(methyl methacrylate) (PMMA) films coating on ZnO nanorods synthesized by hydrothermal oxidation,” Results in Physics, Vol. 7 (2017) 2968.

  24. Y C Chen, C S Wang, T Y Chang, T Y Lin, H M Lin and Y F Chen, “Ultraviolet and visible random lasers assisted by diatom frustules,” Exp. Vol. 23 (2015) 16224.

  25. P K Roy, G Haider, H Lin, Y M Liao, C H Lu, K H Chen, L C Chen, W H Shih, C T Liang and Y F Chen, “Multicolor ultralow-threshold random laser assisted by vertical-graphene network,” Opt. Mater. Vol. 6 (2018) 1800382.

  26. S H Cheng, Y C Yeh, M L Lu, C W Chen and Y F Chen, “Enhancement of laser action in ZnO nanorods assisted by surface Plasmon resonance of reduced graphene oxide nanoflakes,” Exp. Vol. 20 (2012) 799.

  27. W C Liao, Y M Liao, C T Su, P Perumal, S Y Lin, W J Lin, C H Chang, H I Lin, G Haider, C Y Chang, S W Chang, C Y Tsai, T C Lu, T Y Lin and Y F Chen, “Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action,” ACS Appl. Nano Mater. Vol. 1 (2018) 152.

  28. D Zhang, G Kostovski, C Karnutsch and A Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Organic Electron. Vol. 13 (2012) 2342.

  29. H Cao, “Lasing in random media,” Waves Random Media. Vol. 13 (2003) R1-R39.

  30. H Cao, “Random lasers: development, features and applications,” and photonics news, Vol. 16 (2005) 24.

  31. F Luan, B Gu, A S. L Gomes, K Yong, S Wen and P N Prasad, “Lasing in nano-composite random media,” Nano Today, Vol. 10 (2015) 168.

  32. D V Churkin, S Sugavanam, I D Vatnik, Z Wang, E V Podivilov, S A Babin, Y Rao and S K Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Opt. Photon. Vol. 7 (2015) 516.

  33. X Du, H Zhang, H Xiao, P Ma, X Wang, P Zhou and Z Liu, “High-power random distributed feedback fiber laser: From science to application,” Phys (Berlin), Vol. 528 (2016) 649.

  34. S F Yu, “Electrically pumped random lasers,” Phys. D: Appl. Phys. Vol. 48 (2015) 483001.

  35. Y Chen, J Herrnsdorf, B Guilhabert, Y Zhang, I M Watson, E Gu, N Laurand and M D Dawson, “colloidal quantum dot random laser,” Exp. Vol. 19 (2011) 2996.

  36. Y Yung‐Chi, Z P Yang, J M Hwang, H C Su, J Y Haung, T N Lin, J L Shen, M H Lee, M T Tsai and Y J Lee, “Coherent and polarized random laser emissions from colloidal CdSe/ZnS quantum dots plasmonically coupled to ellipsoidal Ag nanoparticles,” Opt. Mat. Vol. 5 (2017) 1600746.

  37. M Cao, Y Zhang, X Song, Y Che, H Zhang, H Dai, G Zhang and J Yao, “Random lasing in a colloidal quantum dot-doped disordered polymer,” Exp. Vol. 24 (2016) 9325.

  38. C Gollner, J Ziegler, L Protesescu, D N Dirin, R T Lechner, G F Popovski, M Sytnyk, S Yakunin, S Rotter, A A Y Amin, C Vidal, C Hrelescu, T A Klar, M Kovalenko and W Heiss, “Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots,” ACS Nano, Vol. 9 (2015) 9792.

  39. A K Augustine, P Radhakrishnan, V P N Nampoori and M Kailasnath, “Enhanced random lasing from a colloidal CdSe quantum dot-Rh6G system,” Laser Phys. Lett. Vol. 12 (2015) 0250061.

  40. L W Li, “Random lasing characteristics in dye-doped semiconductor CdS nanoparticles,” Laser Phys. Lett. Vol. 13 (2016) 015206.

  41. J Yi, G Feng, C Yang, H Zhang, K Yao and S Zhou, “18 μm random laser action based on Cr2+:ZnSe nanocrystalline particles,” Opt. Commun. Vol. 309 (2013) 170.

  42. T Takahashi, T Nakamura and S Adachi, “Blue-light-emitting ZnSe random laser,” Lett. Vol. 34 (2015) 3923.

  43. X Yang, G Feng, K Yao, J Yi, H Zhang and S Zhou, “Random lasing of microporous surface of Cr2+:ZnSe crystal induced by femtosecond laser,” AIP Adv. Vol. 5 (2015) 067160.

  44. H Labiadh, T B Chaabane, D Piatkowski, S Mackowski, J Lalevée, J Ghanbaja, F Aldeek and R Schneider, “Aqueous route to color-tunable Mn-doped ZnS quantum dots,” Chem. Phys. Vol. 140 (2013) 674.

  45. X Ma, J Song and Z Yu, “The light emission properties of ZnS:Mn nanoparticles,” Thin Solid Films, Vol. 519 (2011) 5043.

  46. Z Rui, L Yingbo and S Shuqing, “Synthesis and characterization of high-quality colloidal Mn2+-doped ZnS nanoparticles,” Mater. Vol. 34 (2012) 1788.

  47. F Shuzhen, Z Xingyu, W Qingpu, Z Chen, W Zhengping and L Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” Phys. D: Appl. Phys. Vol. 42 (2009) 015105.

  48. J Kitur, G Zhu, M Bahoura and M A Noginov, “Dependence of the random laser behavior on the concentrations of dye and scatterers,” Opt. Vol. 12 (2010) 024009.

  49. B H Zhang, F Y Wu, Y M Wu and X S Zhan, “Fluorescent method for the determination of sulfide anion with ZnS:Mn quantum dots,” Fluorescence, Vol. 20 (2010) 243.

  50. A S Wiresma, A Lagendijk, “Lasing diffusion with gain and random lasers”, Rev. E Vol. 54 (1996) 4256.

  51. A L Moura, R B Silva, C T Dominguez, É Pecoraro, A S L Gomes and C B de Araújo, “Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640,” Appl. Phys. Vol. 123, (2018) 133104.

ارتقاء امنیت وب با وف ایرانی