نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده آموزش، دانشگاه القادسیه، عراق

چکیده

مطالعۀ کمپلکس‌های فلزی مولکول‌های آلی توجه زیادی را برای کشف سازوکارهای انتقال بار از طریق تک‌مولکولهای آلی فلزی به خود جلب کرده است. در این کار، ما خواص اپتوالکترونیکی کمپلکس کلرید فلز واسطه هم‌پایۀ دی فنیل - بی پیریدین را بررسی می‌کنیم. با تغییر فلز واسطه در گروه اتم‌های Co، Cu، Fe، Mg، Ru و Zn، امکان‌پذیر بودن دستکاری خواص نوری و الکترونیکی سامانه را اثبات می‌کنیم. از محاسبات نظریۀ تابعی چگالی (DFT) با تابعی B3LYP برای تعیین خواص الکترونیکی این مولکول‌های فلزی از جمله پتانسیل یونش، الکترون‌خواهی، گاف انرژی، الکترونگاتیوی، سختی، نرمی و ممان دوقطبی استفاده می‌شود. برای درک عملکرد نوری سامانه‌ها، طیف جذب آنها را در نواحی فرابنفش و فروسرخ، در چارچوب DFT وابسته به زمان بررسی می‌کنیم. نشان می‌دهیم که شش اتم فلزی مورد بررسی، توانایی تنظیم خواص نوری الکترونیکی کمپلکس‌های مولکولی را دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Tuning the optoelectronic properties of Metallo-diphenyl-bipyridine coordination chloride complex

نویسندگان [English]

  • Hayder Mohammed Hadi
  • Qusiy Al-Galiby

Department of Physics, College of Education, University of Al-Qadisiyah, Iraq

چکیده [English]

Studing metal complexes of organic molecules has attracted great attention to explore the mechanisms of charge transfer through organometallic single molecules. In this work, we investigate the optoelectronic properties of diphenyl - bipyridine coordination chloride transition metal complex. By varying the transition metal in the group of Co, Cu, Fe, Mg, Ru and Zn atoms, we demonstrate the ability to manipulate the optical and electronic properties of the system. Density function theory (DFT) calculations with B3LYP functional are used to determine electronic properties of the metallo-molecules, including ionization potential, electronic affinity, energy gap, electronegativity, hardness, softness, and dipole moment. To understand the optical performance of the systems, we consider their absorption spectra in the ultraviolet and infrared regions, in the framework of time-dependent DFT. We argue that the six metallic atoms have the ability to tune the optoelectronic properties of the complex molecules.

کلیدواژه‌ها [English]

  • diphenyl-bipyridine
  • complexes organic molecules
  • chloride complex metal
  • density functional theory calculations
  • absorption spectra
  • electronic properties
  1. Z Ma, et al., New Journal of Chemistry 37, 5 (2013) 1529.
  2. M A Halcrow, Coordination Chemistry Reviews 249, 24 (2005) 2880.
  3. A Zucca, et al., Journal of Organometallic Chemistry 694, 23 (2009) 3753.
  4. J Dupont, C S Consorti, and J Spencer, Chemical Reviews 105, 6 (2005) 2527.
  5. D Saccone, et al., Materials 9, 3 (2016) 137.
  6. B Naidji, et al., Synthetic Metals 221 (2016) 214.
  7. Q H Al Galiby, et al., Nanoscale 8, 4 (2016) 2428.
  8. R Papadakis, Molecules 25, 1 (2020) 1.
  9. M Noori, et al., Scientific Reports 6, 1 (2016) 1.
  10. E U Mughal, et al., Royal Society Open Science 7, 11 (2020) 201208.
  11. Z Ma, et al., Dalton Transactions 43, 10 (2014) 4048.
  12. M Mbarek, B Zaidi, and K Alimi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88 (2012) 23.
  13. E Bednarova, PhD Thesis, Charles University (2018).
  14. J Chapman, et all., South African Journal of Science 101, 9 (2005) 454.
  15. J V Caspar and T J J Meyer, Chem. 87 (1983) 952-957.
  16. E C Constable, Chemical Society Reviews 36, 2 (2007) 246.
  17. U S Schubert and C Eschbaumer, Angewandte Chemie International Edition 41, 16 (2002) 2892.
  18. H Hofmeier and U S Schubert, Chemical Society Reviews 33, 6 (2004) 373.
  19. E A Medlycott and G S Hanan, Chemical Society Reviews 34, 2 (2005) 133.
  20. S C Yu, et al., Advanced Materials 15, 19 (2003) 1643.
  21. A V Malkov, et al., Organometallics 20, 4 (2001) 673.
  22. F Bodar Houillon, et all., Inorganic Chemistry 34, 21 (1995) 5205.
  23. C Lee, et al., Macromolecules 49, 14 (2016) 5051.
  24. O Ninis, et al., Journal of Materials and Environmental Science 8, 7 (2017) 2572.
  25. A D Becke, The Journal of Chemical Physics 98, 7 (1993) 5648.
  26. E Louis, et al., Journal of Physical Chemistry Letters 8, 11 (2017) 2445.
  27. R G Parr, et al., “Absolute Electronegativity and Hardness: Applications to Organic Chemistry,” Academic Press (1989).
  28. P Geerlings, F de Proft, and W Langenaeker, Chemical Reviews 103, 5 (2003) 1793.
  29. R G Parr, L V Szentpály, and S Liu, Journal of the American Chemical Society 121, 9 (1999) 1922.
  30. P K Chattaraj and S Giri, Journal of Physical Chemistry A 111, 43 (2007) 11116.
  31. S Kumar, “Organic Chemistry” University Amritsar (2006).
  32. C G Zhan, J A Nichols, and D A Dixon, Journal of Physical Chemistry A 107, 20 (2003) 4184.
  33. M Oftadeh, S Naseh, and M Hamadanian, Computational and Theoretical Chemistry 966, 1-3 (2011) 20.
  34. G Job and F Herrmann, European Journal of Physics 27, 2 (2006) 353.
  35. R Hussain, et al., Optical and Quantum Electronics 52, 8 (2020) 1.
  36. M J Hoque, A Ahsan, and M B Hossain, Biomedical Journal of Scientific & Technical Research 9, 5 (2018) 7360.
  37. Y A Duan, et al., Organic Electronics 13, 7 (2012) 1213.
  38. J C Merlin and J P. Cornard, Journal of Chemical Education 83, 9 (2006) 1393.
  39. B D Joshi, Journal of Institute of Science and Technology 21, 1 (2016) 1.
  40. R P Smith and E M Mortensen, Journal of the American Chemical Society 78, 16 (1956) 3932.
  41. V Berezovsky, Journal of the Optical Society of America B 25, 3 (2008) 458.
  42. D G Trabada, et al., Cambridge: Cambridge Open Engage; (2020).

 

تحت نظارت وف ایرانی