نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران ، ایران

2 دانشکده فیزیک کاربردی، کالج پزشکی و علوم کاربردی، دانشگاه چرمو، چمچمال، اقلیم کردستان، عراق

چکیده

نانوذرات کادمیوم تلوراید با روش تبخیر حرارتی در دمای K 373 و فشار خلأ  mPa 7/2 بر روی زیرلایه­‌های شیشه لایه­ نشانی شده و لایه­‌های نازک با ضخامت حدود  nm100 ساخته شدند. لایه­‌های تهیه شده درون دستگاه طیف سنجی فرابنفش- مرئی (UV-Vis)  قرار گرفتند تا خواص اپتیکی لایه­‌های نازک مطالعه شود. به منظور بررسی اثر دمای بازپخت بر خواص اپتیکی لایه‌­های نازک کادمیوم تلوراید، این لایه‌­ها در دماهای K (323-373) بازپخت شدند. طیف­‌های جذب نور از لایه­‌ها قبل و بعد از بازپخت ثبت شدۀ طیف سنجی UV-Vis درمحدودۀ طول موج nm 600- 1600 نشان می‌دهند که میزان جذب نور در لایه‌­ها با افزایش دمای بازپخت افزایش یافته است. گاف انرژی اپتیکی لایۀ رشد یافته روند کاهشی را از  eV 519/1 پس از بازپخت دارد. نتایج حاصل از نمودار تاک کاهش گاف انرژی با افزایش دمای بازپخت را نشان می­‌دهد. ضرایب خاموشی و شکست لایه­‌های نازک با افزایش انرژی فوتون و دمای بازپخت افزایش یافتند. تراکم نسبی و قطبش­‌پذیری الکترونی لایه­های رشدیافته پس از بازپخت افزایش می­‌یابند. سایر پارامترهای اپتیکی به دست آمده در این کار ازجمله قسمت‌های حقیقی و موهومی ثابت دی­الکتریک با افزایش دمای بازپخت افزایش یافتند درحالی که تابع اتلاف انرژی سطحی و حجمی کاهش یافتند. نتایج این کار نشان می­‌دهد لایه­‌های رشدیافتۀ کادمیوم تلوراید که در دمای K 373 بازپخت شدند خواص اپتیکی مطلوب‌تری برای کاربردهای الکترواپتیکی دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Annealing temperature effect on optical properties of cadmium telluride thin films

نویسندگان [English]

  • Lida BabazadehHabashi 1
  • Monir Kamalian 1
  • Maryam Gholizadeh Arashti 1
  • Ebrahim Hasani 2

1 Department of Physics, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.

2 Department of Applied Physics, College of Medical and Applied Scinces, Charmo University, Chamchamal, Kurdistan Region,Iraq

چکیده [English]

Cadmium telluride nanoparticles (CdTe NPs) were deposited by the thermal evaporation method on glass substrates at a temperature of 373 K and a vacuum pressure of 2.7 mPa, and thin films with the thickness of 100 nm were fabricated. The prepared films were subjected to ultraviolet-visible (UV-Vis) spectroscopy to study the optical properties of thin films. To investigate the effect of annealing temperature on the optical properties of cadmium telluride thin films, these films were annealed at temperatures (323-373) K. The light absorption spectra of films before and after annealing were recorded using UV-Vis spectroscopy at a wavelength range of 600-1600 nm shows that the value of light absorption by films  increased with the increased annealing temperature. The optical energy bandgap of the grown films has a decrement process from 1.519 eV after annealing. The results of the Tauc plot show the decrease in energy bandgap with annealing. Extinction and refractive indices increase with increment of photon energy and annealing temperature. The relative density and electronic polarizability of grown films increase after annealing. Other optical parameters obtained in this work, including the real and imaginary parts of the dielectric constant, increase, while the surface and volume energy loss functions decrease with increase of the annealing temperature. The results of this work indicate that the deposited cadmium telluride thin films annealed at 373 K have better optical properties for photoelectronic applications.

کلیدواژه‌ها [English]

  • cadmium telluride
  • thermal evaporation deposition
  • optical energy bandgap
  • extinction coefficient
  • electronic polarizability
  • dielectric constant
  1. D L Dreifus, R M Kolbas, K A Harris, R N Bicknell, R L Harper, and J F Schetzina, Applied Physics Letters 51 (1987) 931.
  2. S Abbaspour, B Mahmoudian, and J P Islamian, World journal of nuclear medicine 16 (2017) 101.
  3. Y Hanifehpour, N Hamnabard, B Khomami, S W Joo, B -K Min, and J H Jung, Journal of Rare Earths 34 (2016)
  4. R M Amin, S A Elfeky, T Verwanger, and B Krammer, Biosensors and Bioelectronics 98 (2017) 415.
  5. Q Lin, B Song, H Wang, F Zhang, F Chen, L Wang, L S Li, F Guo, and H Shen, Journal of Materials Chemistry C 4 (2016) 7223.
  6. K Shen, Z Bai, Y Deng, R Yang, D Wang, Q Li, and D Wang, RSC Advances 6 (2016) 52326.
  7. S Chander and M S Dhaka, Physica E: Low-dimensional Systems and Nanostructures 80 (2016) 62.
  8. E Hasani and D Raoufi, Surface Engineering 34 (2018) 914.
  9. M S Hossain, K S Rahman, M R Karim, M O Aijaz, M A Dar, M A Shar, H Misran, and N Amin, Solar Energy 180 (2019) 559.
  10. M Maghouli and H Eshghi, Optik 218 (2020) 165132.
  11. N El-Kadry, M F Ahmed, and K A Hady, Thin Solid Films 274 (1996) 120.
  12. J P quez, et al., Solar Energy Materials and Solar Cells 81 (2004) 363.
  13. M F Al-Kuhaili, M B Mekki, and S A Abdalla, Thin Solid Films 686 (2019) 137412.
  14. L Feng, J Zhang, B Li, W Cai, Y Cai, L Wu, W Li, J Zheng, Q Yan, G Xia, and D Cai, Thin Solid Films 491 (2005) 104.
  15. H Mohammad Ajeel, Z T Hussein, K M Thajeel, R Hussein Mekkilf, Engineering and Technology Journal 32 (2014) 811-818.
  16. A Kuddus, A B M. Ismail, J Hossain, Solar Energy 221 (2021) 488-501.
  17. M A Green, Y Hishikawa, E D Dunlop, D H Levi, J Hohl-Ebinger, and A W Y Ho-Baillie, Progress in Photovoltaics: Research and Applications 26 (2018) 3.
  18. B A Ahmed, I H Shallal, and F I mustafa Al-Attar, Journal of Physics: Conference Series 1032 (2018) 012022.
  19. M Danaie,S Khani, E Noorozzadeh, and M Vahdani, Iranian Journal of Physics Research 19 (2019) 139 (persion).
  20. H R Moutinho, F S Hasoon, F Abulfotuh, and L L Kazmerski, Journal of Vacuum Science & Technology A 13 (1995) 2877.
  21. T L Chu, Solar Cells 23 (1988) 31.
  22. A Vogt, S Schütt, K Frei, and M Fiederle, Journal of Crystal Growth 477 (2017) 114.
  23. S He, H Lu, B Li, J Zhang, G Zeng, L Wu, W Li, W Wang, and L Feng, Materials Science in Semiconductor Processing 67 (2017) 41.
  24. C Doroody, K S Rahman, S F Abdullah, M N Harif, H N Rosly, S K Tiong, and N Amin, Results in Physics 18 (2020) 103213.
  25. S S Shaikh, M Shkir, and E U Masumdar, Physica B: Condensed Matter 580 (2020) 411831.
  26. J Ling, X Zhang, T Mao, L Li, S Wang, M Cao, J Zhang, H Shi, J Huang, Y Shen, and L Wang, Materials 13 (2020) 1536.
  27. Z M Nassar, M H Yükselici, and A A Bozkurt, physica status solidi (b) 253 (2016) 1104.
  28. E Hasani, M G Arashti, L B Habashi, and M Kamalian, Materials Research Express 6 (2019) 046422.
  29. C M Randall and R D Rawcliffe, Applied Optics 7 (1968) 213.
  30. A A Al-Ghamdi, S A Khan, S Al-Heniti, F A Al-Agel, and M Zulfequar, Current Applied Physics 11 (2011) 315.
  31. H Abitan, H Bohr, and P Buchhave, Applied Optics 47 (2008) 5354.
  32. Y Natsume, H Sakata, and T Hirayama, physica status solidi (a) 148 (1995) 485.
  33. V Bilgin, S Kose, F Atay, and I. Akyuz, Materials Chemistry and Physics 94 (2005) 103.
  34. S J Ikhmayies and R N Ahmad-Bitar, Journal of Materials Research and Technology 2 (2013) 221.
  35. J Tauc, Materials Research Bulletin 3 (1968) 37.
  36. M M Kamalian, L Babazadeh Habashi, M Gholizadeh Arashti, and E Hasani, Journal of Interfaces, Thin Films, and Low dimensional systems 5 (2022) 445.
  37. J Novák, S Hasenöhrl, M I Alonso, and M Garriga, Applied Physics Letters 79 (2001) 2758.
  38. S Sandeep and K Dhananjaya, IOP Conference Series: Materials Science and Engineering 73 (2015) 012149.
  39. W W Yu, L Qu, W Guo, and X Peng, Chemistry of Materials 15 (2003) 2854.
  40. K Punitha, R Sivakumar, C Sanjeeviraja, V Sathe, and V Ganesan, Journal of Applied Physics 116 (2014) 213502.
  41. S Chander and M S Dhaka, Journal of Materials Science: Materials in Electronics 27 (2016) 11961.
  42. S Chander, A Purohit, C Lal, and M S Dhaka, Materials Chemistry and Physics 185 (2017) 202.
  43. M I Ryazanov and A A Tishchenko, Journal of Experimental and Theoretical Physics 103 (2006) 539.
  44. R R Reddy, Y N Ahammed, K R Gopal, P A Azeem, and T V R. Rao, Indian Journal of Pure & Applied Physics 40 (2002) 471.
  45. A Wolski, arXiv preprint arXiv:1111.4354 (2011).
  46. C Kittel, “Introduction to Solid State Physics”, Wiley, London ( 2004).
  47. S J Ikhmayies, “ The Influence of Heat Treatment on The Optical Parameters of Spray-Deposited CdS: in Thin Films, Characterization of Minerals, Metals, and Materials” WILEY Online Liberary (2016).
  48. P Čerenkov, Sci URSS. II (1934) 451.
  49. M M El-Nahass, H.S. Soliman, A. El-Denglawey, Applied Physics A 122 (2016) 775.
  50. E Hasani and D Raoufi, Semiconductor Science and Technology 36 (2021) 055004.
  51. M Ghorbani and A Davarpanah, Iranian Journal of Physics Research 17 (2019) 145 (persion).
  52. M Gholizadeh Arashti, L Babazadeh Habashi, M Kamalian, and E Hasani, Iranian Journal of Physics Research 22 (2022) 71 (persion).

 

 

تحت نظارت وف ایرانی