نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه افسری امام علی (ع)، تهران

چکیده

در این مقاله، جنبه‌های مختلف جهت ساخت لایه‌های نازک ZnS و  ZnS-Mg لایه نشانی شده بر بستر ژرمانیوم Ge به روش سل-ژل مورد مطالعه قرار گرفت. هدف اصلی، بررسی حفظ خاصیت پنجره‌ای فیلم‌های ZnS-Mg بود که می‌تواند جهت استفاده در سامانه‌های تصویربرداری حرارتی فروسرخ مورد استفاده قرار بگیرد.در ابتدا روش ساخت سل‌های شفاف و پایدار ZnS و ZnS-Mg مورد بررسی قرار گرفت. در این راستا، بهترین نسبت مواد، بهترین دما و بهترین شرایط تهیه سل‌های ZnS و ZnS-Mg ارائه شد. سپس مؤلفه‌های مؤثر در لایه نشانی فیلم‌های نازک بر بستر ژرمانیوم Ge به روش چرخشی مورد بررسی قرار گرفت. این مؤلفه‌ها شامل بهترین سرعت چرخش، بهترین دمای خشک سازی و بهترین دمای بازپخت تحت گاز آرگون بوده است. در ادامه با انجام روش‌های مشخصه‌یابی همچون طیف‌سنجی تبدیل فوریه FTIR، طیف‌سنجی پرتوایکس XRD و طیف سنج عبوری UV-VIS به بررسی پیوند شیمیایی، ساختار بلوری، خواص اپتیکی و پنجره‌ای عبور طیف فرو سرخ فیلم‌های نازک ZnS-Mg لایه نشانی شده بر بستر ژرمانیوم Ge، پرداخته شده است. نهایتاً، حفظ و وجود خاصیت پنجره‌ای طیف عبوری فروسرخ در فیلم‌های نازک ZnS-Mg نشان داده شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of ZnS-Mg thin films prepared by sol-gel method

نویسندگان [English]

  • Mahdi Gholampour
  • Mahdi Simiari
  • Sobhan Kazempour Ishka

Department of Physics, Faculty of Basic Science, Imam Ali University, Tehran, Iran

چکیده [English]

In this paper, different aspects of making ZnS and ZnS-Mg thin films coated on germanium (Ge) substrate are studied by the sol-gel method. The main goal is to preserve the optical window property of ZnS-Mg thin films that can be used in infrared thermal imaging systems. First, the method of synthesizing transparent and stable sols of ZnS and ZnS-Mg is studied. In this regard, the best molar ratio of materials, the best temperature, and the best conditions for the preparation of ZnS and ZnS-Mg sols are presented. Subsequently, the essential aspects of the spin coating of thin films on the germanium (Ge) substrate are evaluated. These components include; the best rotation speed, best drying temperature, and the best annealing temperature under Argon gas. Furthermore, according to Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-VIS transmission spectroscopy, we characterized the chemical bond, crystal structure, and the optical window property of infrared spectrum transmission for the ZnS-Mg thin films which deposited on Germanium substrate. Finally, the preservation and existence of the optical window property of the infrared transmission spectrum in ZnS-Mg thin films are shown.

کلیدواژه‌ها [English]

  • nanostructure
  • thin film
  • zinc sulfide
  • magnesium
  • sol-gel
  • infrared
  1. CE Torgersen, DM Price, HW Li, and BA McIntosh, Ecological Applications 9 (1999) 301.
  2. BF Andresen, GF Fulop, CM Hanson, and PR Norton, Infrared Technology and Applications XLI, Proceedings of SPIE, Pts 1 and 2, vol no 9451 (2015).
  3. RK Willardson, ER Weber, DD Skatrud, and PW Kruse, Uncooled infrared imaging arrays and systems, Academic press, (1997).
  4. H Gebbie, W Harding, C Hilsum, A Pryce, and V Roberts, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 206 (1951) 87.
  5. RD Hudson, “Infrared system engineering”, Wiley-Interscience New York (1969).
  6. Z Deng, Y Su, W Gong, X Wang, and R Gong, Optical Materials 121 (2021) 111564.
  7. S Firoozifar, A Behjat, E Kadivar, S Ghorashi, and MB Zarandi, Applied surface science 258 (2011) 818.
  8. Z Deng, Y Su, W Qin, T Wang, X Wang, and R Gong, ACS Applied Nano Materials 5 (2022) 5119.
  9. P Sakthivel, G Prasanna Venkatesan, K Subramaniam, and P Muthukrishnan, Journal of Materials Science: Materials in Electronics 30 (2019) 11984.
  10. WJ Tropf and ME Thomas, Window and Dome Technologies and Materials III, SPIE (1992) 318.
  11. ME Thomas, Window and Dome Technologies and Materials, SPIE (1989) 260.
  12. D Harris, Infrared Physics and Technology 39 (1998) 185.
  13. ZL Wang, Journal of Physics: Condensed Matter 16 (2004) R829.
  14. X Fang, T Zhai, UK Gautam, L Li, L Wu, Y Bando, and D Golberg, Progress in Materials Science 56 (2011) 175.
  15. X Fang, L Hu, C Ye, and L Zhang, Pure and Applied Chemistry 82 (2010) 2185.
  16. X Fang, L Wu, and L Hu, Advanced Materials 23 (2011) 585.
  17. X Fang, Y Bando, M Liao, T Zhai, UK Gautam, L Li, Y Koide, and D Golberg, Advanced Functional Materials 20 (2010) 500.
  18. R Xing, Y Xue, X Liu, B Liu, B Miao, W Kang, and S Liu, CrystEngComm 14 (2012) 8044.
  19. M Geszke-Moritz, H Piotrowska, M Murias, L Balan, M Moritz, J Lulek, and R Schneider, Journal of Materials Chemistry B 1 (2013) 698.
  20. M Alqadi, A Migdadi, F Alzoubi, H Al-Khateeb, and AA Almasri, Journal of Sol-Gel Science and Technology 103 (2022) 319.
  21. V Ganesh, T AlAbdulaal, M AlShadidi, M Hussien, A Bouzidi, H Algarni, H Zahran, M Abdel-wahab, and M. Mohammed, I Yahia, s Note: MDPI stays neutral with regard to jurisdictional claims in published (2022).
  22. HW Cheng, P Raghunath, Kl Wang, P Cheng, T Haung, Q Wu, J Yuan, YC Lin, HC Wang, and Y Zou, Nano Letters 20 (2019) 715.
  23. R Vishwakarma, Ukrainian Journal of Physics 62 (2017) 422.
  24. SMandal, SI Ali, and AC Mandal, Applied Physics A 129 (2023) 219.
  25. A Jogi, A Ayana, and B Rajendra, Journal of Materials Science: Materials in Electronics 34 (2023) 624.
  26. T Ivanova, A Harizanova, T Koutzarova, B Vertruyen, and R Closset, Materials 15 (2022) 8883.
  27. DA Reddy, DH Kim, SJ Rhee, BW Lee, and C Liu, Nanoscale research letters 9 (2014) 1.
  28. S Qadri, E Skelton, A Dinsmore, J Hu, W Kim, C Nelson, and B Ratna, Journal of Applied Physics 89 (2001) 115.
  29. S Acharya, N Maheshwari, L Tatikondewar, A Kshirsagar, and S Kulkarni, Crystal growth & design 13 (2013) 1369.
  30. M Chitkara, K Singh, IS Sandhu, and HS Bhatti, Nanoscale Research Letters 6 (2011) 1.
  31. L Wang, J Dai, X Liu, Z Zhu, X Huang, and P Wu, Ceramics International 38 (2012) 1873.
  32. T Thi Quynh Hoa, S McVitie, N Hoang Nam, L Van Vu, T Dinh Canh, and NN Long, Optical Materials 33 (2011) 308.
  33. S Kim, T Lim, M Jung, KJ Kong, KS An, and S Ju, Journal of luminescence 130 (2010) 2153.
  34. S Muthukumaran, Materials letters 93 (2013) 223.
  35. ZQ Yu, ZM Xu, and XH Wu, Chinese Physics B 23 (2014) 107102.
  36. H Saadi, Z Benzarti, P Sanguino, Y Hadouch, D Mezzane, K Khirouni, N Abdelmoula, and H Khemakhem, Applied Physics A 128 (2022) 691.
  37. A Es-Smairi, N Fazouan, EH Atmani, M Khuili, and E Maskar, Applied Physics A 127 (2021) 698.
  38. U Senapati, D Jha, and D Sarkar, Research Journal of Physical Sciences, ISSN 2320 (2013) 4796.
  39. P Bandyopadhyay, A Dey, R Basu, S Das, and P Nandy, Current Applied Physics 14 (2014) 1149.
  40. D Raj, A Dhayal Raj, AA Irudayaraj, R Josephine, M Senthil Kumar, and M Thambidurai, Journal of Materials Science: Materials in Electronics 26 (2015) 659.
  41. M Nilkar, F Ghodsi, and A Abdolahzadeh Ziabari, Applied Physics A 118 (2015) 1377.
  42. K Raja, P Ramesh, and D Geetha, Spectrochimica acta part A: molecular and biomolecular spectroscopy 131 (2014) 183.
  43. DA Reddy, C Liu, R Vijayalakshmi, and B Reddy, Journal of alloys and compounds 582 (2014) 257.
  44. A Karaca, S Sağlam, E Bacaksiz, and Özçelik, Eurasian Journal of Science Engineering and Technology 3 (2022) 36.

تحت نظارت وف ایرانی