نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده مهندسی کامپیوتر, واحد نجف اباد، دانشگاه ازاد اسلامی، نجف اباد

2 گروه ریاضی، دانشکده مهندسی کامپیوتر, واحد نجف اباد، دانشگاه ازاد اسلامی، نجف اباد

چکیده

دراین تحقیق حالت‌های همدوس یک نوسانگر هماهنگ غیرخطی تغییرشکل‌یافته را مورد مطالعه قرار می‌دهیم. با استفاده از نظریۀ اختلال، ویژه توابع و ویژه مقادیر انرژی را برای یک نوسانگر هماهنگ غیرخطی تغییر شکل‌یافته محاسبه می‌کنیم وسپس حالت‌های همدوس تعمیم یافته را براساس فرمول‌بندی گازیو- کلادر تعریف می‌کنیم. سپس با استفاده از پارامتر مندل و تابع همبستگی مرتبۀ دوم به بررسی خواص آماری سامانه می‌پردازیم. تجزیه و تحلیل نشان می‌دهد که حالت‌های همدوس برای یک نوسانگر هماهنگ غیرخطی تغییرشکل‌یافته وغیرتغییرشکل‌یافته به ترتیب آمار زیرپواسونی و فرا‌پواسونی پیروی می‌کند واثرات پاد‌گروهه و گروهه را نشان می‌دهند. به علاوه نشان می‌دهیم که تابع پادهمبستگی برای یک نوسانگر هماهنگ غیرخطی تغییرشکل‌یافته به شدت نوسانی وبی نظم است. همچنین تابع پادهمبستگی یک نوسانگرهماهنگ غیرخطی غیرتغییرشکل‌یافته پدیده‌های نابودی واحیا واحیای کسری را نشان می‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌دهد. حدود پارامترهای مختلف را برای این که نتایج حاصل شده معتبر باشد نیز مورد بررسی قرار می‌دهیم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating and analysis of the properties of coherent states of a deformed nonlinear harmonic oscillator

نویسندگان [English]

  • Mohsen Daeimohammad 1
  • Mohammad Nili Ahmadabadi 2

1 Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Department of Mathematics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

چکیده [English]

In this research, we study the coherent states of a deformed nonlinear harmonic oscillator. We use the perturbation theory to compute eigenstates and eigen-values ​​for a deformed nonlinear harmonic oscillator and then define the generalized coherent states based on the Gazeau-Klauder formulation. Then, using the Mandel parameter and the second-order correlation function, we will investigate the statistical properties of the system. The analysis shows that the coherent states for a deformed and non-deformed nonlinear harmonic oscillator follows the sub-Poissonian and super-Poissonian statistics, and exhibits the antibunching and bunching effects, respectively. In addition, we show that the anti-correlation function for a deformed nonlinear oscillator is strongly fluctuating and irregular. Also, the anti-correlation function of a non-deformed nonlinear harmonic oscillator shows the phenomena of collapse and revival of fractional revelations. We also examine the limits of different parameters so that the obtained results are valid.

کلیدواژه‌ها [English]

  • deformed nonlinear harmonic oscillator
  • coherent states
  • Mandel parameter
  • super-Poissonian and sub-Poissonian statistical distributions
  • the bunching and antibunching effects
  1. P M Mathews and M Lakshmanan, Q. Math. 32 (1974) 215.
  2. M Lakshmanan and S Rajasekar, “Nonlinear dynamics: Integrability, Chaos, and Patterns”, (Springer-Verlag, Berlin) (2003).
  3. N Amir and S Iqbal, Theor. Phys. 62 (2014) 790.
  4. J F Cariñena, M F Rañada, M Santander, and M Senthilvelan, Nonlinearity 17 (2004) 1941.
  5. J F Cariñena, M F Rañada, and M Santander, Math. Phys. 54 (2004) 285.
  6. J F Cariñena, M F Rañada, and M Santander, Phys. 322 (2007) 2249.
  7. B Midya and B Roy, Phys. A: Math. Theor. 42 (2009) 285301.
  8. X H  Wang and Y  B  Liu, J. Theor. Phys. 50 (2011) 2697.
  9. R Roknizadeh and H Heydari, J. Geom. Methods Mod. Phys. 10 (2013) 1350056.
  10. R Roknizadeh and H Heydari, Phys. 45, 7 (2015) 827.
  11. B Bagchi, S Das, S Ghosh, and S Poria, Phys. A: Math. Theor. 46 (2013) 032001.
  12. A Schulze-Halberg and J Wang, Few-Body Syst. 55 (2014) 1223.
  13. D Ghosh and B Roy, Phys. 353 (2015) 222.
  14. J R Klauder and B S Skagerstam, “CoherentStates:Applications in Physics and Mathematical Physics”, WorldScientific, Singapore, (1985).
  15. W M Zhang, D H Feng, and R Gilmore, Mod. Phys. 62 (1990) 867.
  16. A M Perelomov, “Generalized Coherent States and Their Applications” Springer-Verlag, Berlin, (1986).
  17. T Ali, J P Antoine, and J P Gazeau, “Coherent States, Wavelets and Their Generalizations”, Springer, Berlin, (2000).
  18. D F Walls and G J Milburn, “Quantum Optics”, 2nd ed. Springer, Berlin, (2008).
  19. R J Glauber, “Quantum Theory of Optical Coherences”, Wiley-VCH, (2007).
  20. B C Sanders, Phys. A: Math. Theor. 45 (2012) 244002 and references therein.
  21. R J Glauber, Rev. Lett. 10 (1963) 277.
  22. R J  Glauber, Rev. 130 (1963) 2529.
  23. R J Glauber, Rev. 131 (1963) 2766.
  24. L C Biedenharn, Phys: Math.Gen. 22 (1989) L873.
  25. MacFarlane, Phys. A: Math. Gen. 22 (1989) 4581.
  26. M Daeimohammad, F Kheirandish, and M R Abolhasany, J. Theor. Phys. 48 (2009) 693.
  27. M Daeimohammad, F Kheirandish, and K Saeedi, J. Theor. Phys. 50 (2011) 171.
  28. M Daeimohammad, J. Mod. Phys. B, 13 (2019) 1950126.
  29. V I Manko, G Marmo, S Solimeno and F Zaccaria, J. Mod. Phys. A 8 (1993) 3577.
  30. V I Man’ko, G Marmo, S Solimeno and F Zaccaria, Lett. A 176 (1993) 173.
  31. P Aniello, V I Man’ko, G Marmo, S Solimeno and F Zaccaria, Opt. B: Quant. Semiclass. Opt. 2 (2000) 718.  
  32. G Su and M Ge, Lett. A 173 (1993) 17.
  33. S Ghosh, Math. Phys. 53 (2012) 062104.
  34. N Amir and S Iqbal, Math. Phys. 55 (2014) 0114101.
  35. N Amir and S  Iqbal, Math. Phys. 56 (2015) 062108.
  36. O Von Roos and H Mavromatis, Rev. B. 31 (1985) 2294.
  37. J M Lévy-Leblond, Rev. A. 52 (1995) 1845.
  38. J R  Klauder, Phys. A: Math. Gen. 29 (1996) 293.
  39. J P Gazeau and J R Klauder, Phys. A: Math. Gen. 32 (1999) 123.
  40. S Iqbal and F Saif, Math. Phys. 52 (2011) 082105.
  41. S Iqbal, P Riviére, and F Saif, J. Theor. Phys. 49 (2010) 2340.
  42. S Iqbal and F Saif, Lett. A. 376 (2012) 1531.
  43. S Iqbal and F Saif, J. Russ. Laser Res. 34 (2013) 77.
  44. D Popov, V Sajfert, and I Zaharie, Physica A 387 (2008) 4459.
  45. A Chenaghlou and O Faizy, Math. Phys. 49 (2008) 022104.
  46. M Angelova and V Hussin, Phys. A: Math. Gen. 41 (2008) 304016.
  47. J P  Antoine, J  P   Gazeau, P  Monceau, J  R  Klauder, and K  A  Penson, J. Math. Phys. 42 (2001) 2349.
  48. J M Hollingworth, A Konstadopoulou, S Chountasis, A Vourdas, and N B Backhouse, Phys. A: Math. Gen. 34 (2001) 9463.
  49. R Delbourgo, A Salam, and J Strathdee, Rev. 187 (1969) 1999.
  50. K Nishijima and T Watanabe, Theor. Phys. 47 (1972) 996.
  51. D J B Danial and C B Duke, Rev. 152 (1966) 683.
  52. T Gora and F Williams, Rev. 177 (1969) 1179.
  53. Q G Zhu and H Kroemer, Rev. B 27 (1983) 3519.
  54. T Li and K J Kuhn, Rev. B 47 (1993) 12760.
  55. R Roknizadeh and M  K  Tavassoly, Math. Phys. 46 (2005) 042110.
  56. L Mandel, Lett. 4 (1979) 205; L Mandeland, E Wolf, “Optical Coherenceand QuantumOptics”, Cambrige University Press, Cambrige, (1995).
  57. E Schrödinger, Naturwissenschaften 14 (1926) 664.
  58. R W Robinett, Rep. 392 (2004) 1.

ارتقاء امنیت وب با وف ایرانی