نوع مقاله : مقاله پژوهشی
نویسندگان
گروه فیزیک، دانشکده علوم پایه، دانشگاه اراک، اراک، کد پستی 8349-8-38156
چکیده
در این مقاله، یک مدل با مشتقات مراتب بالا برای الکترودینامیک در یک فضا-زمان مینکوفسکی 1+D بعدی از راه معرفی یک عامل شکل به درون جملۀ جنبشی نظریۀ ماکسول به صورت 1/4µ0 FµνFµν→ -1/4µ0 FµνFHD2(ℓ2□)Fµν- ارائه میشود که ℓ>0 یک مقیاس طول مشخصه است. محاسبات ما نشان میدهند که در این تعمیم با مشتقات مراتب بالاتر نظریۀ ماکسول به ازایDÊÎ{3, 4, 5} پتانسیل الکتروستاتیکی مربوط به یک بار نقطهای در مکان بار، مقداری متناهی است. به ازای 3=D شکل صریح پتانسیل و میدان الکتریکی یک بار نقطهای در این الکترودینامیک با مشتقات مراتب بالاتر به صورت تحلیلی به دست آورده میشوند. بنا به براوردهای عددی انجام شده، مقیاس طول مشخصۀ ℓ کران بالایی برابر با ℓmax ~1/100ℓelectroweak دارد که ℓelectroweak= 10-18m مقیاس طول مربوط به برهمکنشهای الکتروضعیف است . در خاتمه متذکر میشویم که به ازای ℓ<<1، نتایج به دست آمده در این مقاله با نتایج حاصل از نظریۀ ماکسول متعارف سازگار است.
کلیدواژهها
- الکترودینامیک ماکسول
- روشهای منظمسازی
- عامل شکل
- مقیاس طول مشخصه
- نظریههای میدان با مشتقات مراتب بالاتر
موضوعات
عنوان مقاله [English]
A finite model for electrodynamics by introducing a form factor fHD2(ℓ2□)=1+(-ℓ2□)2 into the kinetic term of Maxwell theory
نویسندگان [English]
- Mostafa Hashemi
- Seyed Kamran Moayedi
Department of Physics, Faculty of Basic Sciences, Arak University, Arak 38156-8-8349, Iran
چکیده [English]
In this paper, a higher-derivative model for electrodynamics is presented in a D+1 dimensional Minkowski space-time by introducing a form factor into the kinetic term of Maxwell theory as -1/4µ0 FµνFµν→ -1/4µ0 FµνFHD2(ℓ2□)Fµν , where is a characteristic length scale. Our calculations show that for DÊÎ{3, 4, 5} the electrostatic potential of a point charge is finite at the position of the point charge in this higher-derivative modification of Maxwell's theory. For D=3 the explicit form of the potential and the electric field of a point charge are obtained analytically in this higher-derivative electrodynamics. According to numerical estimations, the upper bound for the characteristic length scale ℓ is ℓmax ~1/100ℓelectroweak , where ℓelectroweak= 10-18m is the electroweak length scale. Finally, it should be emphasized that for ℓ<<1 the results of this paper are compatible with the results of ordinary Maxwell theory.
کلیدواژهها [English]
- Maxwell electrodynamics
- regularization techniques
- form factor
- characteristic length scale
- field theories with higher derivative terms
- J D Jackson, “Classical Electrodynamics”, John Wiley & Sons, Inc. Third Edition, New York (1999).
- A Zangwill, “Modern electrodynamics”, Cambridge University Press, Cambridge, UK (2013).
- A Rostami and S K Moayedi, Opt. A: Pure Appl. Opt. 5 (2003) 380.
- A Rostami and S K Moayedi, Laser Phys. 14 (2004) 1492.
- A Pais and G Uhlenbeck, Rev. 79 (1950) 145.
- L D Faddeev and A A Slavnov, “Gauge fields: an introduction to quantum theory”, CRC Press, Second Edition, Boca Raton, Florida (2018).
- L Buoninfante, G Lambiase, and A Mazumdar, Phys. B 944 (2019) 114646.
- E Witten, Physics Today 49 (1996) 24.
- L N Chang, Z Lewis, D Minic, and T Takeuchi, Advances in High Energy Physics 2011 (2011) 493514.
- K Nozari, M Gorji, V Hosseinzadeh, and B Vakili, Quantum Grav. 33 (2016) 025009.
- W S Chung and H Hassanabadi, Lett. B 785 (2018) 127.
- F Wagner, Phys. J. C 83 (2023) 154.
- S K Moayedi, M R Setare, and B Khosropour, Advances in High Energy Physics 2013 (2013) 657870.
- S K Moayedi, M R Setare, and H Moayeri, Europhysics Letters 98 (2012) 50001.
- S K Moayedi, M R Setare, and B Khosropour, International Journal of Modern Physics A 28 (2013) 1350142.
- S Nabipour and S K Moayedi, Iranian Journal of Physics Research 22 (2022) 269(in Persian).
- S Nabipour and S K Moayedi, Journal of Research on Many-body Systems 12 (2023) 51.
- M Lazar and J Leck, Symmetry 12 (2020) 1104.
- IL Shapiro, “Primer in Tensor Analysis and Relativity”, Springer, New York (2019).
- V P Frolov and A Zelnikov, Rev. D 93 (2016) 064048.
- J Boos, International Journal of Modern Physics D 27 (2018) 1847022.
- J Boos, V P Frolov, and A Zelnikov, Rev. D 97 (2018) 084021.
- J Boos, “Effects of non-locality in gravity and quantum theory”, Springer Nature, Cham, Switzerland (2021).
- J Boos, V P Frolov, and J P Soto, Rev. D 103 (2021) 045013.
- C M Reyes, Rev. D 80 (2009) 105008.
- N Moeller and B Zwiebach, Journal of High Energy Physics 10 (2002) 034.
- A Izadi and S K Moayedi, Annals of Physics 411 (2019) 167956.
- M Ranaiy and S K Moayedi, Modern Physics Letters A 35 (2020) 2050038.
- Efthimiou and C. Frye, “Spherical harmonics in p dimensions”, World Scientific, Singapore (2014).
- A Accioly, J H Neto, G Correia, G Brito, J de Almeida, and W Herdy, Rev. D 93 (2016) 105042.
- M R Spiegel, S Lipschutz, and J Liu, “Schaum's Outline of Mathematical Handbook of Formulas and Tables”, McGraw-Hill, Fifth Edition (2018).
- M Dalarsson and N Dalarsson, “Tensors, relativity, and cosmology”, Academic Press, Second Edition, New York (2015).
- F Fathi and S K Moayedi, International Journal of Geometric Methods in Modern Physics 15 (2018) 1850118.
- E Freitag and R Busam, “Complex Analysis”, Lecture Notes in Mathematics, Springer, Second Edition, Berlin (2005).
- J A P Soto, “Gravitational and electromagnetic field of static and ultrarelativistic objects in nonlocal theory”, MSc thesis, Alberta University, Canada (2022).
- F Bopp, Annalen der Physik 430 (1940) 345.
- B Podolsky, Rev. 62 (1942) 68.
- T D Lee and G C Wick, Rev. D 2 (1970) 1033.
- V M Tkachuk, Foundations of Physics 46 (2016) 1666.
- A V Silva, E M C Abreu, and M J Neves, International Journal of Modern Physics A 31 (2016) 1650096.