نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک دانشگاه دامغان، دامغان، سمنان، ایران

2 دانشکده فیزیک، دانشگاه دامغان

3 مرکز تحقیقات فیزیک پلاسما، دانشگاه آزاد واحد علوم تحقیقات، تهران، ایران

چکیده

کنترل پلاسمای توکامک فرایند پیچیده‌ای است که تحت تأثیر عدم قطعیت‌های ساختاری و دینامیک مدل‌سازی نشده قرار می‌گیرد. برای غلبه بر این چالش‌ها و دست‌یابی به یک رفتار مقاومِ خوش تعریف، توسعۀ کنترل‌گرهای استاندارد بسیار مهم است. نظریۀ کنترل تفکیکی برای فرایندهای چند ورودی- چند خروجی (MIMO) یک تکنیک قدرتمند است که امکان کاهش یا حذف عبارت‌های جفت شدگیِ متقابلِ نامطلوب در توکامک‌ها را داده و آن را نسبت به طرح کنترل تک ورودی-تک خروجی (SISO) برتری می‌دهد. مطالعۀ ما دو نوع کنترل‌‌گر را پیشنهاد می‌کند: کنترل‌گر‌های PID تنظیمی و کنترل‌گر‌های آبشاری مقاوم، که از رفتار تفکیکی و مقاوم بودن برای کنترل موقعیت افقی و جریان پلاسمایی در توکامک IR-T1 استفاده می‌کنند. ما این کنترل‌گر‌ها را از طریق شبیه‌سازی مقایسه کرده و تأثیر تغییر ولتاژ سیم‌پیچ میدان عمودی را بر جفت‌شدگیِ متقابل این دو پارامتر پلاسمایی مطالعه می‌کنیم. نتایج نشان می‌دهد که کنترل‌گر PID تنظیمی نسبت به کنترل‌گر مقاوم از نظر براوردن الزامات کنترلی، رد اختلال، ردیابی مقدار مرجع، و فرونشانی گسیختگی‌ها، به‌ویژه در کنترل جفت شدگیِ متقابل، بهتر عمل می‌کند. البته تأیید قطعی نیازمند مطالعات تجربی با شرایط متنوع‌تر و در نهایت، ساخت و بهره‌برداری از این کنترل‌گرها در توکامک‌ها است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Integrated plasma control system for IR-T1 tokamak with disruption mitigation

نویسندگان [English]

  • Ahmad Naghidokht 1
  • Morteza Janfaza 2
  • Mahmood Ghorannevis 3

1 School of Physics, Damghan University, Damghan, Semnan

2 School of Physics, Damghan University

3 Plasma Physics Research Center, Islamic Azad University, Science and Research Branch, Tehran, Iran

چکیده [English]

Controlling tokamak plasmas is a complex process that is affected by structured uncertainties and unmodeled dynamics. To overcome these challenges and achieve a well-defined robust behavioral outcome, it is crucial to develop standard controllers. The decoupling control theory for Multiple-Input Multiple-Output (MIMO) processes is a powerful technique that allows the mitigation or elimination of undesirable cross-coupling terms in tokamaks, making it superior to the Single-Input Single-Output (SISO) control scheme. Our study proposes two types of controllers, PID-tuned and cascaded-robust controllers, that exploit decoupling and robustness for horizontal position and current control of plasma in IR-T1 tokamak. We compare the controllers through simulations and study the impact of changing the vertical field coil voltage on the cross-coupling of these two plasma parameters. The results demonstrate that the PID-tuned controller outperforms the robust controller in terms of meeting control requirements, disturbance rejection, reference value tracking, and disruption mitigation, especially in cross-coupling controls. Of course, the definitive confirmation requires experimental studies with more diverse conditions and, finally construction and operation of these controllers in tokamaks.

کلیدواژه‌ها [English]

  • IR-T1 tokamak
  • PID-tuned controller
  • cascaded-robust controller
  • cross-coupling
  • disruption mitigation
  1. A Ogata and H Ninomiya, J. Appl. Phys. 18 (1979) 825.
  2. A Portone, et al., Fusion Technol.32 (1997) 374. 
  3. G Ambrosino, et al., “Plasma current and shape control in tokamaks using and -synthesis”, in IEEE Proceedings of the Conference on Decision and Control, San Diego, California, (1997) 3697.
  4. M Emami, A R Babazadeh, and H Rasouli, Pramana; Journal of Physics 62 (2004) 53.
  5. G De Tommasi, et al., Fusion Eng. Des. 129 (2018) 152.
  6. Y V Mitrishkin, et al., “Linear and impulse control systems for plasma unstable vertical position in elongated tokamak”, in 51st IEEE conference on Decision and Control, Maui, Hawaii (2012) 1697.
  7. R A Fahmy, R I Badr, and F A Rahman, The Mediterranean Journal of Meas. Contr. 11 (2015) 438.
  8. C A Lin, “Necessary and sufficient conditions for existence of decoupling controllers”, in IEEE Proceedings of the Conference on Decision and Control, New Orleans, Louisiana, (1995) 1157.
  9. Q G Wang, et al., Automat. 33 (1997) 319.
  10. F G Shinskey, “Process Control Systems: Application, Design, and Adjustment”, McGraw-Hill, New York (1996).
  11. S Skogestad and I Postlethwaite, “Multivariable Feedback Control: Analysis and Design”, John Wiley & Sons, New York (2005).
  12. K J Astrom and T Hagglund, “PID controllers: Theory, Design and Tuning”, Instrument Society of America: Research Triangle Park, NC, (1995).
  13. Y V Mitrishkin, et al., “Plasma magnetic robust control in tokamak-reactor”, in Proceedings of the IEEE Conference on Decision and Control, San Diego, California, (2006) 2207.
  14. Y V Mitrishkin, A V Kadurin, and A Y Korostelev, “Tokamak plasma shape and current controller design in multivariable cascade system”, in IFAC World Congress, Milano, Italy (2011) 3722.
  15. G Ambrosino, et al., “A model-based controller design approach for the TCV tokamak”, in IEEE Proceedings of the International Conference on Control Applications, Trieste, Italy (1998) 202.
  16. M Ariola, et al., IEEE Trans. Contr. Syst. Technol. 10 (2002) 646.
  17. M L Walker, D A Humphreys and J R Ferron, “Control of plasma poloidal shape and position in the DIII-D tokamak”, in IEEE Proceedings of the Conference on Decision and Control, San Diego, California (1997) 3703.
  18. D A Humphreys, et al., “Initial implementation of a multivariable plasma shape and position controller on the DIII-D tokamak”, in Proceedings of the IEEE International Conference on Control Applications, Anchorage, Alaska (2000) 412.
  19. R Albanese, et al., “A MIMO architecture for integrated control of plasma shape and flux expansion for the EAST tokamak”, in IEEE Conference on Control Applications, Buenos Aires, Argentina (2016) 611.
  20. W Shi, et al., “Multivariable multi-model-based magnetic control system for the current ramp-up phase in the National Spherical Torus Experiment (NSTX)”, in 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, Florida (2011) 2632.
  21. L Boncagni, et al., “Performance-based controller switching: An application to plasma current control at FTU”, in 54th IEEE Conference on Decision and Control, Osaka, Japan (2015) 2319.
  22. G Ramogida, et al., Mat. Energy 12 (2017) 1082.
  23. A Naghidokht, et al., Fusion Eng. Des. 107 (2016) 82.
  24. S Meshkani, M Ghoranneviss and Ch Rasouli, “Recent MCF Activities in Iran”, in 23rd IAEA Technical Meeting on Research Using Small Fusion Devices, Santiago, Chile (2017) 1-88.
  25. Goodarzi, M. Ghoranneviss, and A. Salar Elahi, J. Fusion Energy 32 (2013) 103.
  26. M Ariola and A Pironti, “Magnetic Control of Tokamak Plasmas”, Springer-Verlag, London (2008).
  27. Y Suzuki, et al., J. Appl. Phys. 16 (1997) 2237.
  28. G Balas, et al., “ -Analysis and Synthesis Toolbox: for Use with MATLAB, User's Guide version 3”, The MathWorks Inc. (1998).
  29. E Gagnon, A Pomerleau, and A Desbiens, ISA Trans. 37 (1998) 265.
  30. P Y Chen and W D Zhang, ISA Trans. 46 (2007) 199.
  31. L Boncagni, et al., Fusion Eng. Des. 88 (2013) 1109.
  32. A Naghidokht, “MIMO IR-T1: MATLAB M-File for designing of a decoupled Multiple-Input Multiple-Output (MIMO) controller for plasma current and horizontal position in IR-T1 tokamak”, Mendeley Data, V. 2, Dataset, (2022) https://doi.org/10.17632/khwsrw8hy6.1.
  33. Niomiya and N. Suzuki, Jpn. J. Appl. Phys. 21 (1982) 1323.
  34. M Emami, M Ghoranneviss, and R Tarkeshian, Fusion Eng. Des. 83 (2008) 684.
  35. Salar Elahi and M. Ghoranneviss, J. Fusion Energy 33 (2014) 242.
  36. A P V d A Aguiar, G Acioli Júnior and P R Barros, Control. Autom. Electr. Syst. 32 (2011) 830.
  37. R H Naik, D V A Kumar, and P Sujatha, Ain Shams Eng. Journal 11 (2020) 343.

تحت نظارت وف ایرانی