نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک هسته‌ای، دانشکده علوم پایه، دانشگاه مازندران، بابلسر

2 گروه فیزیک، دانشگاه ملی مهارت، تهران

چکیده

در این پژوهش اثر خاکستر هلیوم بر حالت احتراق و سوختن پلاسمای همجوشی غیر نوترونی در راکتور توکامک کروی مورد بررسی قرار گرفت. از آنجایی که حضور خاکستر هلیوم غیر قابل اجتناب است، نسبت زمان محصورسازی ذرات هلیوم به زمان محصورسازی انرژی ρ^* را به عنوان پارامتر سنجش در نظر گرفتیم. بنابراین، اثر غلظت هلیوم با استفاده از معادلات صفر-بعدی توازن توان و توازن ذرات جفت‌شده بر رفتار پلاسما حالت احتراق و سوختن بررسی شد. در این تحقیق، برخلاف پژوهش­‌های قبلی­ ما، پلاسما را غیر آرمانی در نظر گرفتیم و غلظت ناخالصی‌­های Be و W ثابت در نظر گرفته شد تا اثر ناخالصی­‌های رایج در محیط پلاسمای توکامک کروی هم بررسی شود. در واقع، توابع استفاده شده برای محاسبۀ توان اتلاف تابشی بر حسب جدیدترین داده­‌های اتمی و مدل تعادل تاجی و رویکردی جدید هستند. با حل عددی معادلات و رسم منحنی­‌های هم‌توان به این نتیجه رسیدیم که غلظت هلیوم در حالت سوختن پلاسما بیشتر از احتراق پلاسما است و افزایش ρ^* موجب بهبود پایداری در پلاسما می­شود. حاصل‌­ضرب‌سه­‌گانه در حالت سوختن برای ρ^*>4.63 و در حالت احتراق برای ρ^*>3.0 بسته می­‌شود و امکان فعالیت اجرایی پلاسما وجود نخواهد داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the interplay between helium ash and impurities in an aneutronic fusion plasma environment for sustainable energy production

نویسندگان [English]

  • Farinaz Sharifi 1
  • S. Mohammad Motevalli 1
  • Fereshteh Fadaei 2

1 Department of Nuclear Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran

2 Department of Physics, National University of Skills (NUS), Tehran, Iran

چکیده [English]

In this research, the effect of helium ash on the ignition and burn condition of aneutronic fusion plasma in the spherical tokamak reactor was investigated. Since the presence of helium ash is unavoidable, we considered the ratio of helium particle confinement time to the energy confinement time ρ* as a figure of merit. Therefore, the effect of helium concentration by using zero-dimensional coupled equations of power balance and particle balance on the ignition and burn behavior of plasma was investigated. In this research, unlike our previous research, we considered a non-ideal plasma, and the constant concentrations of Be and W impurities were assumed to investigate the effect of common impurities in the environment of spherical tokamak’s plasma. In fact, the functions used to calculate the radiation loss power are a new approach based on the latest atomic data and coronal equilibrium model. By numerically solving the equations and attaining the iso-curves, we concluded that the helium concentration in the burn state of the plasma is higher than the ignition state and increasing ρ* improves the stability in the plasma. The triple product curves close for ρ*>4.63 in the burn state and for ρ*>3.0 in ignition state, and there will be no possibility of plasma operational activity.

کلیدواژه‌ها [English]

  • spherical tokamak
  • aneutronic fusion
  • helium ash
  • impurity
  • power and particle balance
  1. A J H Donné, Trans. Royal Soc. 377 (2019) 20170432.
  2. P E Stott, Plasma Phys. Control. Fusion47 (2005) 1305.
  3. W R Fundamenski, and A A Harms,  Technol.29 (1996) 313-349.
  4. I N Golovin,  Technol.22 (1992) 103.
  5. E Mazzucato, Plasma Phys. 6 (2023) 100022.
  6. M Ono and R Kaita,  Plasmas.22 (2015) 040501.
  7. D C Robinson, Plasma Phys. Control. Fusion41 (1999) A143.
  8. A Hudoba, et al.,  Mater. Energy35 (2023) 101410.
  9. G S Kurskiev, et al., Plasma Phys. Rep.49 (2023) 403.
  10. B Carpentieri, “Advances in Fusion Energy Research. From Theory to Models, Algorithms, and Applications”, IntechOpen, (2022).
  11. S E Wurzel and S C Hsu,  Plasmas.29 (2022) 062103.
  12. B Coppi, et al.,  Fusion41 (2001) 1253.
  13. J D Galambos, and Y K M Peng,  Technol.19 (1991) 31.
  14. F Sharifi, S M Motevalli, and F Fadaei,  Scr.96 (2021) 095601.
  15. S Meschini, M Zucchetti, and E Pagliuca, Fusion Sci. Technol.77 (2021) 784.
  16. L Rajablou, S M Motevalli, and F Fadaei, Pramana97 (2023) 115.
  17. S M Motevalli and F Fadaei, J. Mod. Phys. E 21 (2012) 1250078.
  18. M H Redi, and S A Cohen,  Nucl. Mater.176 (1990) 262.
  19. S W Haney and L J Perkins, IEEE Thirteenth SOFE(1989) 396.
  20. H H Abou-Gabal, and G A Emmert, Fusion31 (1991) 407.
  21. L Rajablou, S M Motevalli, and F Fadaei,  Scr.97 (2022) 095601.
  22. I Ivanova-Stanik, et al., Fusion Eng. Des.146 (2019) 2021.
  23. D Reiter, G H Wolf, and H Kever,  Fusion30 (1990) 2141.
  24. A V Eremin, and A A Shishkin, Journal of Kharkiv University, 781 (2007) 63.
  25. J Ongena, et al.,  Phys12 (2016) 398.
  26. M Nakata, et al., (2018) IAEA-CN 234.
  27. W Guo, et al.,  Fusion61 (2020) 016020.
  28. E J Synakowski, et al.,  Rev. Lett.75 (1995) 3689.
  29. D Reiter, G H Wolf, and H Kever,  Nucl. Mater.176 (1990) 756.
  30. E R Rebhan and G Van Oost, Fusion Sci. Technol49 (2006) 16.
  31. H S Bosch and G M Hale,  Fusion32 (1992) 611.
  32. A A Mavrin, Eff. Defects Solids 173 (2018) 388.
  33. O Mitarai, A Hirose, and H M Skarsgard,  Technol.19 (1991) 234.
  34. O Mitarai, H Matsuura, and Y Tomita, Fusion Eng. Des. 81 (2006)
  35. O Mitarai, Nuclear Reactors, Nuclear Fusion and Fusion Engineering 405 (2009).
  36. H P Summers, and M B Hooper, Plasma Physics25 (1983) 1311.
  37. CODATA "Internationally recommended values of the fundamental physical constants” (2018) (https://www.physics.nist.gov/cuu/Constants/
  38. P A M Van Hoof, et al., MNRAS444 (2014) 420.
  39. I Ivanova-Stanik, et al., Fusion Eng. Des.136 (2018) 1313.
  40. R Wenninger, et al. Fusion57 (2016) 016011.
  41. Post, et al. Data Nucl. Data Tables20 (1977) 397.
  42. C Breton, C De Michelis, and M Mattioli,  Quant. Spectrosc. Radiat. Transf.19 (1978) 367.
  43. H P Summers, and R W P McWhirter,  Phys. B At. Mol. Opt. Phys.12 (1979) 2387.
  44. D K Morozov, E O Baronova, and I Y Senichenkov, Plasma Phys. Rep.33 (2007) 906.
  45. P F Buxton, et al., Plasma Phys. Control. Fusion61 (2019) 035006.
  46. E Rebhan, et al.,  Fusion36 (1996) 264.
  47. M A Jakobs, "Fusion energy: Burning questions", PhD Thesis, Applied Physics and Science Education, Eindhoven University of Technology (2016).
  48. J W Berkery, et al., Plasma Phys. Control. Fusion62 (2020) 085007.
  49. A C C Sips, et al.,  Fusion58 (2018) 126010.
  50. S M Motevalli, and F Fadaei, and Z Naturforsch 70 (2015) 79.
  51. G Becker,  Fusion28 (1988) 1458.
  52. D L Hillis, et al.,  Rev. Lett.65 (1990) 2382.
  53. M Fichtmüller, et al. Nucl. Mater.266 (1999) 330.
  54. S J Zweben, et al. Fusion40 (2000) 91.

ارتقاء امنیت وب با وف ایرانی