نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه لرستان

2 دانشگاه صنعتی سیدنی

چکیده

در این مطالعه اثر تابش پلاسمای سرد تشکیل شده از گاز هلیم بر نانوالکترود کبالت/ نانولولۀ کربنی چند جداره جهت ذخیره‌سازی برگشت‌پذیر یون هیدروژن بررسی شده است. برای انجام عملیات پلاسما، سوسپانسیون‌های مواد در زمان‌های مختلف مانند 30، 60 و 100 ثانیه در معرض تابش پلاسما قرار گرفتند و سپس هر نمونه به صورت جداگانه روی فوم مس به روش الکتروشیمیایی انباشت شد و به‌ عنوان ماده آند فعال مورد استفاده قرار گرفت. پس از مشخصه‌یابی، ظرفیت تخلیۀ نانوالکترود‌ها مورد بررسی قرار گرفت و نشان داد که پلاسمای سرد، حتی در کوتاه‌ترین زمان تابش پلاسما (30 ثانیه)، به دلیل ایجاد گروه‌های عاملی اکسیژن و نیتروژن فعال بر روی دیواره‌های نانولوله‌های کربنی، ظرفیت ذخیره‌سازی هیدروژن نانوالکترودها را افزایش می‌دهد. همچنین این مطالعه نشان داد که زمان بهینۀ تیمار پلاسما برابر با ۶۰ ثانیه است که در این شرایط، بیشترین ظرفیت تخلیه معادل ۹۷۰۰ میلی‌آمپر‌ساعت بر گرم در جریان ثابت ۱ میلی‌آمپر به‌دست می‌آید. در نتیجه، تیمار پلاسمایی نانوالکترودها کاربردهای امیدوارکننده‌ای در صنعت ذخیره سازی هیدروژن و باتری می‌تواند ارائه دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the effect of cold atmospheric pressure He plasma on the electrochemical hydrogen storage performance of Co/MWCNT nanoelectrodes

نویسندگان [English]

  • Maryam Malmir 1
  • Azadeh Barjasteh 1
  • Shokufeh Varshoy 2

1 Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;

2 University of Technology Sydney

چکیده [English]

The effect of cold atmospheric He plasma on multi-walled carbon nanotube (MWCNT) / cobalt nanoelectrodes has been investigated for reversible hydrogen ion storage. To perform plasma treatment, the material suspensions were subjected to plasma treatment for different durations, such as 30, 60, and 100 seconds, and then deposited on Cu foam to be used as active anode material. After characterization, the discharge capacity of the nanoelectrodes was examined, revealing that cold plasma treatment, even at the shortest duration (30 seconds), increases the hydrogen storage capacity of the nanoelectrodes due to the formation of reactive oxygen and nitrogen functional groups on the walls of the MWCNTs. This study also indicated that there is an optimal plasma treatment time of 60 seconds, resulting in the highest discharge capacity of 9700 mAh/gr at a constant current of 1 mA. Consequently, He plasma treatment of the nanoelectrodes offers promising applications in hydrogen storage and the battery industry.

کلیدواژه‌ها [English]

  • Cold Plasma
  • Electrochemical Hydrogen Storage Capacity
  • MWCNT / Cobalt nanoelectrode
1. HM Cheng, QH Yang, and C Liu, Carbon, 39(10) (2001) 1447.
2. B Zohuri, Hydrogen Energy: Challenges and Solutions for a Cleaner Future, Springer (2019).
3. JO Abe, A Popoola, E Ajenifuja, and OM Popoola, International Journal of Hydrogen Energy, 44(29) (2019)15072.
4.  K Dai, L Lu, C Liang, L Geng, and G Zhu, Materials Letters, 176 (2016) 42.
5.  AC Dillon, KEH Gilbert, PA Parilla, JL Alleman, GL Hornyak, KM Jones, and MJ Heben, Proceedings of the 2002 US DOE Hydrogen Program Review (2002).
6. S Ullah Rather, International Journal of Hydrogen Energy, 45(7) (2020) 4653.
7. L Schlapbach, and A Züttel, Nature, 414(6861) (2001) 353.
8. A Dillon, and M Heben, Applied Physics A, 72 (2001) 133.
9. M Hirscher, Handbook of Hydrogen Storage: Topics in Applied Physics, Springer (2010).
10. H Lee, J Ihm, M L Cohen, and S G Louie, Nano Letters, 10(3) (2010) 793.
11.  B Kuchta, L Firlej, A Mohammadhosseini, P Boulet, M Beckner, J Romanos, and P Pfeifer, Journal of the American Chemical Society, 134(36) (2012) 15130.
12.  L Chen, K Xia, L Huang, L Li, L Pei, and S Fei, International Journal of Hydrogen Energy, 38(8) (2013) 3297.
13. M Konni, N Narayanan, AS Dadhich, and SB Mukkamala, Fullerenes, Nanotubes and Carbon Nanostructures, 23(9) (2015) 782.
14. YJ Han, and SJ Park, Applied Surface Science, 415 (2017) 85.
15.  AC Dillon, T Gennett, JL Alleman, KM Jones, PA Parilla, and MJ Heben, Proceedings of the 2000 DOE/NREL Hydrogen Program Review, 8–10 (2000).
16. B Panella, M Hirscher, and S Roth, Carbon, 43(10) (2005) 2209.
17. A Dillon, KM Jones, TA Bekkedahl, CH Kiang, DS Bethune, and MJ Heben, Nature, 386(6623) (1997) 377.
18.  C Wang, X Pang, G Wang, L Gao, and  F Fu, Photochem, 3(1) (2023) 15.
19.  R Ströbel, J Garche, PT Moseley, L Jörissen, and G Wolf, Journal of Power Sources, 159(2) (2006) 781.
20. K Atkinson, S Roth, M Hirscher, and W Grünwald, Fuel Cells Bulletin, 4(38) (2001) 9.
21.  C Liu, YY Fan, M Liu, HT Cong, HM Cheng, and MS Dresselhaus, Science, 286(5442) (1999) 1127.
22. FL Darkrim, P Malbrunot, and GP Tartaglia, International Journal of Hydrogen Energy, 27(2) (2002) 193.
23.  A Reyhani, SZ Mortazavi, S Mirershadi, AZ Moshfegh, P Parvin, and AN Golikand, Journal of Physical Chemistry C, 115(14) (2011) 6994.
24. A Dhanya, N Ranjan, and S Ramaprabhu, Energy Storage, 5(4) (2023) e421.
25. M Aghababaei, AA Ghoreyshi, and K Esfandiari, International Journal of Hydrogen Energy, 45(43) (2020) 23112.
26. R Zacharia, SU. Rather, SW Hwang, and KS Nahm, Chemical Physics Letters, 434(4–6) (2007) 286.
27. T Yildirim, and S Ciraci, Physical Review Letters, 94(17) (2005) 175501.
28. T Yildirim, J Íñiguez, and S Ciraci, Physical Review B, 72(15) (2005) 153403.
29.  L Gao, E Yoo, J Nakamura, W Zhang, and HT Chua, Carbon, 48(11) (2010) 3250.
30. A D’Angola, G Colonna, and E Kustova, Frontiers in Physics, 10 (2022) 39.
31. M Babaie, I Bakoji, R Erfani, and A Nourian, EGU General Assembly Conference Abstracts (2021).
32.  W Li, M Cao, S Meng, Z Li, H Xu, L Liu, and H Song, Journal of Cleaner Production, 387 (2023) 135913.
33. I Aminu, MA Nahil, and PT Williams, Energy & Fuels, 36(7) (2022) 3788.
34. S Varshoy, B Khoshnevisan, M Mohammadi, and M Behpour, Physica B: Condensed Matter, 526 (2017) 143.
35. S Tsang, P Harris, and M Green, Nature, 362(6420) (1993) 520.
36.  A Kuznetsova, Jr JT Yates, VV Simonyan, JK Johnson, CB Huffman, and RE Smalley, Chemical Physics Letters, 115(14) (2001) 6691.
37.  A Kuznetsova, I Popova, Jr JT Yates, MJ Bronikowski, CB Huffman, J Liu, RE Smalley, HH Hwu, and JG Chen, Journal of the American Chemical Society, 123(43) (2001)10699.
38. W Lee, SB Lee, JW Yi, BS Kim, and JH Byun, Electrochemical and Solid-State Letters, 14(7) (2011) K37.
39.  M Uysal, T Cetinkaya, M Kartal, A Alp, and H Akbulut, Thin Solid Films, 572 (2014) 216.
40. M Mohammadi and B Khoshnevisan, International Journal of Hydrogen Energy, 41(24) (2016)10311.
41.  E Pajootan, M Ye, M Zhang, S Niroumandrad, S Omanovic, and S Coulombe, Journal of Physics D: Applied Physics, 55(19) (2022) 194001.
42.  J Burress, M Kraus, M Beckner, R Cepel, G Suppes, C Wexler, P Pfeifer, Nanotechnology, 20(20) (2009) 204026.
43.  S Patchkovskii, JS Tse, SN Yurchenko, L Zhechkov, T Heine, and G Seifert, Proceedings of the National Academy of Sciences, 102(30) (2005) 10439.
44. Y Ferro, F Marinelli, A Allouche, and C Brosset, Journal of Chemical Physics, 118(12) (2003) 5650.
45.  B Tarabová, P Lukeš, MU Hammer, H Jablonowski, T von Woedtke, S Reuter, and Z Machala, Physical Chemistry Chemical Physics, 21(17) (2019) 8883.
46. W A Pryor, Annual Review of Physiology, 48(1) (1986) 657.
47. P Lukes, E Dolezalova, I Sisrova, and M Clupek, Plasma Sources Science and Technology, 23(1) (2014) 015019.
48. WH Glaze, JW Kang, and DH Chapin, Hydrogen Peroxide and Ultraviolet Radiation (1987) 335.
49.  KF Sergeichev, NA Lukina, RM Sarimov, IG Smirnov, AV Simakin, AS Dorokhov, and SV Gudkov, Frontiers in Physics, 8 (2021) 614684.
50.  JH Liang, TX Hu, D Wu, and ZM Sheng, Physical Review E, 105(4) (2022) 045206.
51. CY Hou, TK Kong, CM Lin, and HL Chen, Applied Sciences, 11(11) (2021) 5304.
52. W Li, Y Bai, Y Zhang, M Sun, R Cheng, X Xu, Y Chen, and Y Mo, Synthetic Metals, 155(3) (2005) 509.
53. D Sridhar, H Yu, JL Meunier, and S Omanovic, Materials Advances, 1(2) (2020) 215.
54. D Sridhar, JL Meunier, and S Omanovic, Materials Chemistry and Physics, 223 (2019) 434.
55.  A Ilnicka, M Skorupska, M Szkoda, Z Zarach, P Kamedulski, W Zielinski, and JP Lukaszewicz, Scientific Reports, 11(1) (2021) 18387.
56. R Monsef, M Ghiyasiyan-Arani, and M Salavati-Niasari, ACS Applied Energy Materials, 4(1) (2021) 680.

ارتقاء امنیت وب با وف بومی