Document Type : Original Article

Authors

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

Abstract

Memory behavior in certain disordered mechanical systems is investigated through the analysis of the behavior of a collection of identifiable memory elements called hysterons. We begin by introducing a simple elastic buckling rod as the simplest memory element (hysteron). The hysteron is a two-state element capable of transitioning between its internal states in response to an external force. These transitions depend not only on the instantaneous magnitude of the applied force but also on the history of previous forces. A system composed of two hysterons allows us to study the role of interactions between hysterons in shaping the memory behavior of more realistic systems. Apart from potential reciprocal interactions, non-reciprocal interactions are also examined. Hysteron transitions show an unprecedented variety and complexity; this is crucial for understanding memory in real materials and for designing new metamaterials with the desired behaviors.

Keywords

Main Subjects

  1. J D Paulsen and N C Keim, Annual Review of Condensed Matter Physics16 (2024) 61.
  2. N C Keim and J D Paulsen, Science Advances 7 (2021) 7685.
  3. C W Lindeman S R Nagel, Science Advances 7 (2021) 7133.
  4. N C Keim and D Medina, Science Advances 8 (2022) 1614.
  5. V F Hagh and S R Nagel, arXiv:2403.03926 (2024).
  6. C W Lindeman, T R Jalowiec, and N C Keim, arXiv:2306.07177 (2023).
  7. A Szulc, M Mungan, and I Regev, The Journal of Chemical Physics 156 (2022) 164506.
  8. H Bense and M van Hecke, PNAS 118 (2021) e2111436118.
  9. K Matan, et al., Rev. Lett. 88 (2002) 076101.
  10. N C Keim, et al. Reviews of Modern Physics 91 (2019)
  11. T Chen, M Pauly, and P M Reis, Nature 589 (2021) 386.
  12. J Ding and M van Hecke, The Journal of Chemical Physics 156 (2022) 204902.
  13. Y Song, et al., Nature communications 10 (2019) 882.
  14. C W Lindeman, et al., Rev. Lett. 130 (2023) 197201.
  15. T Jules, et al., Communications Physics 6 (2023) 25.
  16. J Liu, et al., PNAS 121 (2024) 2308414121.
  17. J D Paulsen, arXiv:2409.07726 (2024).
  18. J P Sethna, et al. Phys. Rev. Lett. 70 (1993) 3347.
  19. J A Barker, et al. Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 386 (1983) 251.
  20. L Corte, et Nature Physics 4 (2008) 420.
  21. D J Pine, et al. Nature 438 (2005) 997.
  22. A Sebt and M Akhavan, Iranian Journal of Physics Research 3 (2003): 199-211.
  23. N C Keim and P E Arratia, Rev. Lett. 112 (2014) 028302.
  24. T Jules, et al., Physical Review Research 4 (2022) 013128.
  25. S Doraiswamy, “Discrete preisach model for the superelastic response of shape memory alloys”, Texas A & M University, (2012).
  26. F Preisach, Zeitschrift für physik 94 (1935) 277.
  27. J Deutsch, A Dhar, and O Narayan, Rev. Lett. 92 (2004) 227203.
  28. M van Hecke, Physical Review E 104 (2021) 054608.
  29. M H Teunisse, and M van Hecke, arXiv:2404.11344 (2024).
  30. L Euler, “The rational mechanics of flexible or elastic bodies 1638-1788: introduction to Vol X and XI” Springer Science & Business Media, (1980).
  31. M Kardar, “Statistical Physics of Fields” Statistical Physics of Fields, (2007).
  32. M Brandenbourger, et al., Nature communications 10 (2019) 4608.
  33. AV Ivlev, et al., Physical Review X 5 (2015) 011035.

ارتقاء امنیت وب با وف بومی